
Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Endoplasmic Reticulum Unfolded Protein Responses: Molecular Mechanism and Role in Pathophysiology
Miankun Wu 1,†, Fen Feng 2,†, Jiangang Cao 3,* and Linxi Chen 1,*
1 Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
2 The School of Pharmacy, Shaoyang University, Shaoyang 422000, China
3 The Affiliated Nanhua Hospital, Clinical Pharmacy Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
* Correspondence: jgcao66@whu.edu.cn (J.C.); 1995001765@usc.edu.cn (L.C.)
† These authors contributed equally to this work.
Received: 29 July 2024; Revised: 29 September 2024; Accepted: 15 October 2024; Published: 30 October 2024
Abstract: To alleviate ER stress, Endoplasmic reticulum unfolded protein responses (ER UPR) is a set of defensive mechanisms that induce the nucleus to decrease protein synthesis due to incorrect protein aggregation in the ER triggered by different pathogenic causes. Overactivation of ER UPR has been linked to a multitude of human disorders, such as autoimmune diseases, malignancies, hypertension, and retinopathy, according to an increasing number of studies. In addition, ER UPR activity prolongs cell life and delays the aging process by preserving the equilibrium of proteins in the endoplasmic reticulum lumen. Furthermore, as described in the literature recently, adaptive activation of ER UPR improves hypertension, obesity, cardiovascular disease, and neurodegenerative illnesses. Targeting ER UPR pathways may be a useful therapeutic approach for treating diabetes, obesity, fatty liver, and neurodegenerative illnesses given the diversity of ER UPR.
Keywords:
endoplasmic reticulum unfolded protein response molecular mechanism metabolic diseases neurodegenerative diseases drug therapyReferences
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luis, A.; McCarthy, N.; Montibeller, L.; More, S.; et al. Endoplasmic reticulum stress signalling—From basic mechanisms to clinical applications. FEBS J. 2019, 286, 241–278. https://doi.org/10.1111/febs.14608.
- He, J.; Zhou, Y.; Sun, L. Emerging mechanisms of the unfolded protein response in therapeutic resistance: From chemotherapy to Immunotherapy. Cell Commun. Signal 2024, 22, 89. https://doi.org/10.1186/s12964-023-01438-0.
- Peng, H.; Zhou, Q.; Liu, J.; Wang, Y.; Mu, K.; Zhang, L. Endoplasmic reticulum stress: A vital process and potential therapeutic target in chronic obstructive pulmonary disease. Inflamm. Res. 2023, 72, 1761–1772. https://doi.org/10.1007/s00011-023-01786-0.
- Coleman, O.I.; Haller, D. ER Stress and the UPR in Shaping Intestinal Tissue Homeostasis and Immunity. Front. Immunol. 2019, 10, 2825. https://doi.org/10.3389/fimmu.2019.02825.
- Groenendyk, J.; Agellon, L.B.; Michalak, M. Calcium signaling and endoplasmic reticulum stress. Int. Rev. Cell Mol. Biol. 2021, 363, 1–20. https://doi.org/10.1016/bs.ircmb.2021.03.003.
- Dong, J.; Chen, L.; Ye, F.; Tang, J.; Liu, B.; Lin, J.; Zhou, P.H.; Lu, B.; Wu, M.; Lu, J.H.; et al. Mic19 depletion impairs endoplasmic reticulum-mitochondrial contacts and mitochondrial lipid metabolism and triggers liver disease. Nat. Commun. 2024, 15, 168. https://doi.org/10.1038/s41467-023-44057-6.
- Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 2021, 18, 499–521. https://doi.org/10.1038/s41569-021-00511-w.
- Ajoolabady, A.; Wang, S.; Kroemer, G.; Klionsky, D.J.; Uversky, V.N.; Sowers, J.R.; Aslkhodapasandhokmabad, H.; Bi, Y.; Ge, J.; Ren, J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr. Rev. 2021, 42, 839–871. https://doi.org/10.1210/endrev/bnab006.
- Sun, X.; Lin, R.; Lu, X.; Wu, Z.; Qi, X.; Jiang, T.; Jiang, J.; Mu, P.; Chen, Q.; Wen, J.; et al. UPF3B modulates endoplasmic reticulum stress through interaction with inositol-requiring enzyme-1alpha. Cell Death Dis. 2024, 15, 587. https://doi.org/10.1038/s41419-024-06973-3.
- Kettel, P.; Karagoz, G.E. Endoplasmic reticulum: Monitoring and maintaining protein and membrane homeostasis in the endoplasmic reticulum by the unfolded protein response. Int. J. Biochem. Cell Biol. 2024, 172, 106598. https://doi.org/10.1016/j.biocel.2024.106598.
- Salvagno, C.; Mandula, J.K.; Rodriguez, P.C.; Cubillos-Ruiz, J.R. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 2022, 8, 930–943. https://doi.org/10.1016/j.trecan.2022.06.006.
- Ghemrawi, R.; Khair, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21. https://doi.org/10.3390/ijms21176127.
- Hetz, C.; Papa, F.R. The Unfolded Protein Response and Cell Fate Control. Mol. Cell 2018, 69, 169–181. https://doi.org/10.1016/j.molcel.2017.06.017.
- Harding, H.P.; Calfon, M.; Urano, F.; Novoa, I.; Ron, D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 2002, 18, 575–599. https://doi.org/10.1146/annurev.cellbio.18.011402.160624.
- Park, S.M.; Kang, T.I.; So, J.S. Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines 2021, 9, 791. https://doi.org/10.3390/biomedicines9070791.
- Beilankouhi, E.A.V.; Sajadi, M.A.; Alipourfard, I.; Hassani, P.; Valilo, M.; Safaralizadeh, R. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol. Res. Pract. 2023, 248, 154706. https://doi.org/10.1016/j.prp.2023.154706.
- Naama, M.; Bel, S. Autophagy-ER stress crosstalk controls mucus secretion and susceptibility to gut inflammation. Autophagy 2023, 19, 3014–3016. https://doi.org/10.1080/15548627.2023.2228191.
- Li, W.; Cao, T.; Luo, C.; Cai, J.; Zhou, X.; Xiao, X.; Liu, S. Crosstalk between ER stress, NLRP3 inflammasome, and inflammation. Appl. Microbiol. Biotechnol. 2020, 104, 6129–6140. https://doi.org/10.1007/s00253-020-10614-y.
- Zhang, J.; Guo, J.; Yang, N.; Huang, Y.; Hu, T.; Rao, C. Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis. 2022, 13, 1051. https://doi.org/10.1038/s41419-022-05444-x.
- Yuan, S.; She, D.; Jiang, S.; Deng, N.; Peng, J.; Ma, L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol. Med. 2024, 30, 40. https://doi.org/10.1186/s10020-024-00808-9.
- Yang, Z.; Huo, Y.; Zhou, S.; Guo, J.; Ma, X.; Li, T.; Fan, C.; Wang, L. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab. 2022, 34, 2018–2035 e2018. https://doi.org/10.1016/j.cmet.2022.10.010.
- Mandula, J.K.; Chang, S.; Mohamed, E.; Jimenez, R.; Sierra-Mondragon, R.A.; Chang, D.C.; Obermayer, A.N.; Moran-Segura, C.M.; Das, S.; Vazquez-Martinez, J.A.; et al. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell 2022, 40, 1145–1160 e1149. https://doi.org/10.1016/j.ccell.2022.08.016.
- Blackwood, E.A.; Hofmann, C.; Santo Domingo, M.; Bilal, A.S.; Sarakki, A.; Stauffer, W.; Arrieta, A.; Thuerauf, D.J.; Kolkhorst, F.W.; Muller, O.J.; et al. ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb. Circ. Res. 2019, 124, 79–93. https://doi.org/10.1161/CIRCRESAHA.118.313854.
- Chen, X.; Shi, C.; He, M.; Xiong, S.; Xia, X. Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 352. https://doi.org/10.1038/s41392-023-01570-w.
- Bhat, S.A.; Vasi, Z.; Adhikari, R.; Gudur, A.; Ali, A.; Jiang, L.; Ferguson, R.; Liang, D.; Kuchay, S. Ubiquitin proteasome system in immune regulation and therapeutics. Curr. Opin. Pharmacol. 2022, 67, 102310. https://doi.org/10.1016/j.coph.2022.102310.
- Yadav, D.; Lee, J.Y.; Puranik, N.; Chauhan, P.S.; Chavda, V.; Jin, J.O.; Lee, P.C.W. Modulating the Ubiquitin-Proteasome System: A Therapeutic Strategy for Autoimmune Diseases. Cells 2022, 11, 1093. https://doi.org/10.3390/cells11071093.
- Smith, M.H.; Ploegh, H.L.; Weissman, J.S. Road to ruin: Targeting proteins for degradation in the endoplasmic reticulum. Science 2011, 334, 1086–1090. https://doi.org/10.1126/science.1209235.
- Kopp, M.C.; Larburu, N.; Durairaj, V.; Adams, C.J.; Ali, M.M.U. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat. Struct. Mol. Biol. 2019, 26, 1053–1062. https://doi.org/10.1038/s41594-019-0324-9.
- Liu, F.; Liu, Z.; Cheng, W.; Zhao, Q.; Zhang, X.; Zhang, H.; Yu, M.; Xu, H.; Gao, Y.; Jiang, Q.; et al. The PERK Branch of the Unfolded Protein Response Safeguards Protein Homeostasis and Mesendoderm Specification of Human Pluripotent Stem Cells. Adv. Sci. 2023, 10, e2303799. https://doi.org/10.1002/advs.202303799.
- Lei, Y.; Yu, H.; Ding, S.; Liu, H.; Liu, C.; Fu, R. Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon 2024, 10, e25937. https://doi.org/10.1016/j.heliyon.2024.e25937.
- Cabral-Miranda, F.; Tamburini, G.; Martinez, G.; Ardiles, A.O.; Medinas, D.B.; Gerakis, Y.; Hung, M.D.; Vidal, R.; Fuentealba, M.; Miedema, T.; et al. Unfolded protein response IRE1/XBP1 signaling is required for healthy mammalian brain aging. EMBO J. 2022, 41, e111952. https://doi.org/10.15252/embj.2022111952.
- Chen, Y.; Brandizzi, F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. 2013, 23, 547–555. https://doi.org/10.1016/j.tcb.2013.06.005.
- Maurel, M.; Chevet, E.; Tavernier, J.; Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 2014, 39, 245–254. https://doi.org/10.1016/j.tibs.2014.02.008.
- Huang, R.; Hui, Z.; Wei, S.; Li, D.; Li, W.; Daping, W.; Alahdal, M. IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis. J. Cell Physiol. 2022, 237, 118–127. https://doi.org/10.1002/jcp.30537.
- Bohnert, K.R.; McMillan, J.D.; Kumar, A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J. Cell Physiol. 2018, 233, 67–78. https://doi.org/10.1002/jcp.25852.
- McQuiston, A.; Diehl, J.A. Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum. F1000Res 2017, 6, 1897. https://doi.org/10.12688/f1000research.12138.1.
- Shen, J.; Chen, X.; Hendershot, L.; Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 2002, 3, 99–111. https://doi.org/10.1016/s1534-5807(02)00203-4.
- Glembotski, C.C. Roles for ATF6 and the sarco/endoplasmic reticulum protein quality control system in the heart. J. Mol. Cell Cardiol. 2014, 71, 11–15. https://doi.org/10.1016/j.yjmcc.2013.09.018.
- Marciniak, S.J.; Chambers, J.E.; Ron, D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat. Rev. Drug Discov. 2022, 21, 115–140. https://doi.org/10.1038/s41573-021-00320-3.
- Senft, D.; Ze’ev, A.R. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 2015, 40, 141–148.
- Garg, A.D.; Kaczmarek, A.; Krysko, O.; Vandenabeele, P.; Krysko, D.V.; Agostinis, P. ER stress-induced inflammation: Does it aid or impede disease progression? Trends Mol. Med. 2012, 18, 589–598. https://doi.org/10.1016/j.molmed.2012.06.010.
- Chipurupalli, S.; Samavedam, U.; Robinson, N. Crosstalk Between ER Stress, Autophagy and Inflammation. Front. Med. 2021, 8, 758311. https://doi.org/10.3389/fmed.2021.758311.
- Salminen, A.; Kauppinen, A.; Suuronen, T.; Kaarniranta, K.; Ojala, J. ER stress in Alzheimer's disease: A novel neuronal trigger for inflammation and Alzheimer's pathology. J. Neuroinflammation 2009, 6, 41. https://doi.org/10.1186/1742-2094-6-41.
- Kaser, A.; Lee, A.H.; Franke, A.; Glickman, J.N.; Zeissig, S.; Tilg, H.; Nieuwenhuis, E.E.; Higgins, D.E.; Schreiber, S.; Glimcher, L.H.; et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008, 134, 743–756. https://doi.org/10.1016/j.cell.2008.07.021.
- Hasnain, S.Z.; Lourie, R.; Das, I.; Chen, A.C.; McGuckin, M.A. The interplay between endoplasmic reticulum stress and inflammation. Immunol. Cell Biol. 2012, 90, 260–270. https://doi.org/10.1038/icb.2011.112.
- Cybulsky, A.V.; Takano, T.; Papillon, J.; Bijian, K. Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J. Biol. Chem. 2005, 280, 24396–24403. https://doi.org/10.1074/jbc.M500729200.
- Inagi, R.; Kumagai, T.; Nishi, H.; Kawakami, T.; Miyata, T.; Fujita, T.; Nangaku, M. Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 2008, 19, 915–922. https://doi.org/10.1681/ASN.2007070745.
- Bodman-Smith, M.D.; Fife, M.F.; Wythe, H.; Corrigal, V.M.; Panayi, G.S.; Wedderburn, L.R.; Woo, P. Anti-BiP antibody levels in juvenile idiopathic arthritis (JIA). Rheumatology 2004, 43, 1305–1306. https://doi.org/10.1093/rheumatology/keh186.
- Eggleton, P.; Ward, F.J.; Johnson, S.; Khamashta, M.A.; Hughes, G.R.; Hajela, V.A.; Michalak, M.; Corbett, E.F.; Staines, N.A.; Reid, K.B. Fine specificity of autoantibodies to calreticulin: Epitope mapping and characterization. Clin. Exp. Immunol. 2000, 120, 384–391. https://doi.org/10.1046/j.1365-2249.2000.01214.x.
- Goeb, V.; Thomas-L'Otellier, M.; Daveau, R.; Charlionet, R.; Fardellone, P.; Le Loet, X.; Tron, F.; Gilbert, D.; Vittecoq, O. Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes. Arthritis Res. Ther. 2009, 11, R38. https://doi.org/10.1186/ar2644.
- Komurasaki, R.; Imaoka, S.; Tada, N.; Okada, K.; Nishiguchi, S.; Funae, Y. LKM-1 sera from autoimmune hepatitis patients that recognize ERp57, carboxylesterase 1 and CYP2D6. Drug Metab. Pharmacokinet. 2010, 25, 84–92. https://doi.org/10.2133/dmpk.25.84.
- Kreisel, W.; Siegel, A.; Bahler, A.; Spamer, C.; Schiltz, E.; Kist, M.; Seilnacht, G.; Klein, R.; Berg, P.A.; Heilmann, C. High prevalence of antibodies to calreticulin of the IgA class in primary biliary cirrhosis: A possible role of gut-derived bacterial antigens in its aetiology? Scand. J. Gastroenterol. 1999, 34, 623–628. https://doi.org/10.1080/003655299750026100.
- Nagayama, S.; Yokoi, T.; Tanaka, H.; Kawaguchi, Y.; Shirasaka, T.; Kamataki, T. Occurrence of autoantibody to protein disulfide isomerase in patients with hepatic disorder. J. Toxicol. Sci. 1994, 19, 163–169. https://doi.org/10.2131/jts.19.3_163.
- Tarr, J.M.; Winyard, P.G.; Ryan, B.; Harries, L.W.; Haigh, R.; Viner, N.; Eggleton, P. Extracellular calreticulin is present in the joints of patients with rheumatoid arthritis and inhibits FasL (CD95L)-mediated apoptosis of T cells. Arthritis Rheum. 2010, 62, 2919–2929. https://doi.org/10.1002/art.27602.
- Watanabe, K.; Ohira, H.; Orikasa, H.; Saito, K.; Kanno, K.; Shioya, Y.; Obara, K.; Sato, Y. Anti-calreticulin antibodies in patients with inflammatory bowel disease. Fukushima J. Med. Sci. 2006, 52, 1–11. https://doi.org/10.5387/fms.52.1.
- Weber, C.K.; Haslbeck, M.; Englbrecht, M.; Sehnert, B.; Mielenz, D.; Graef, D.; Distler, J.H.; Mueller, R.B.; Burkhardt, H.; Schett, G.; et al. Antibodies to the endoplasmic reticulum-resident chaperones calnexin, BiP and Grp94 in patients with rheumatoid arthritis and systemic lupus erythematosus. Rheumatology (Oxford) 2010, 49, 2255–2263. https://doi.org/10.1093/rheumatology/keq272.
- Han, J.; Kaufman, R.J. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 2016, 57, 1329–1338. https://doi.org/10.1194/jlr.R067595.
- Lee, J.N.; Ye, J. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J. Biol. Chem. 2004, 279, 45257–45265. https://doi.org/10.1074/jbc.M408235200.
- Bobrovnikova-Marjon, E.; Hatzivassiliou, G.; Grigoriadou, C.; Romero, M.; Cavener, D.R.; Thompson, C.B.; Diehl, J.A. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc. Natl. Acad. Sci. USA 2008, 105, 16314–16319. https://doi.org/10.1073/pnas.0808517105.
- Wang, T.; Zhao, Y.; You, Z.; Li, X.; Xiong, M.; Li, H.; Yan, N. Endoplasmic Reticulum Stress Affects Cholesterol Homeostasis by Inhibiting LXRalpha Expression in Hepatocytes and Macrophages. Nutrients 2020, 12, 3088. https://doi.org/10.3390/nu12103088.
- Zhang, K.; Wang, S.; Malhotra, J.; Hassler, J.R.; Back, S.H.; Wang, G.; Chang, L.; Xu, W.; Miao, H.; Leonardi, R.; et al. The unfolded protein response transducer IRE1alpha prevents ER stress-induced hepatic steatosis. EMBO J. 2011, 30, 1357–1375. https://doi.org/10.1038/emboj.2011.52.
- Zhou, H.; Liu, R. ER stress and hepatic lipid metabolism. Front. Genet. 2014, 5, 112. https://doi.org/10.3389/fgene.2014.00112.
- Basseri, S.; Austin, R.C. ER stress and lipogenesis: A slippery slope toward hepatic steatosis. Dev. Cell 2008, 15, 795–796. https://doi.org/10.1016/j.devcel.2008.11.013.
- Xiao, G.; Zhang, T.; Yu, S.; Lee, S.; Calabuig-Navarro, V.; Yamauchi, J.; Ringquist, S.; Dong, H.H. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J. Biol. Chem. 2013, 288, 25350–25361. https://doi.org/10.1074/jbc.M113.470526.
- Yu, Z.; Fan, X.; Zhao, X.; He, T.; Li, X.; Du, H.; Zhao, M.; Zhu, R.; Li, M.; Zhang, Z.; et al. Polystyrene Nanoplastics Induce Lipid Metabolism Disorder by Activating the PERK-ATF4 Signaling Pathway in Mice. ACS Appl. Mater. Interfaces 2024, 16, 34524–34537. https://doi.org/10.1021/acsami.4c04416.
- Wu, Z.; Yang, F.; Jiang, S.; Sun, X.; Xu, J. Induction of Liver Steatosis in BAP31-Deficient Mice Burdened with Tunicamycin-Induced Endoplasmic Reticulum Stress. Int. J. Mol. Sci. 2018, 19, 2291. https://doi.org/10.3390/ijms19082291.
- Hong, X.; Roh, W.; Sullivan, R.J.; Wong, K.H.K.; Wittner, B.S.; Guo, H.; Dubash, T.D.; Sade-Feldman, M.; Wesley, B.; Horwitz, E.; et al. The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis. Cancer Discov. 2021, 11, 678–695. https://doi.org/10.1158/2159-8290.CD-19-1500.
- Song, S.; Tan, J.; Miao, Y.; Zhang, Q. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J. Cell Physiol. 2018, 233, 3867–3874. https://doi.org/10.1002/jcp.26137.
- Qi, Z.; Chen, L. Endoplasmic Reticulum Stress and Autophagy. Adv. Exp. Med. Biol. 2019, 1206, 167–177. https://doi.org/10.1007/978-981-15-0602-4_8.
- Kouroku, Y.; Fujita, E.; Tanida, I.; Ueno, T.; Isoai, A.; Kumagai, H.; Ogawa, S.; Kaufman, R.J.; Kominami, E.; Momoi, T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007, 14, 230–239. https://doi.org/10.1038/sj.cdd.4401984.
- Lee, W.S.; Yoo, W.H.; Chae, H.J. ER Stress and Autophagy. Curr. Mol. Med. 2015, 15, 735–745. https://doi.org/10.2174/1566524015666150921105453.
- Margariti, A.; Li, H.; Chen, T.; Martin, D.; Vizcay-Barrena, G.; Alam, S.; Karamariti, E.; Xiao, Q.; Zampetaki, A.; Zhang, Z.; et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J. Biol. Chem. 2013, 288, 859–872. https://doi.org/10.1074/jbc.M112.412783.
- Vidal, R.L.; Figueroa, A.; Court, F.A.; Thielen, P.; Molina, C.; Wirth, C.; Caballero, B.; Kiffin, R.; Segura-Aguilar, J.; Cuervo, A.M.; et al. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum. Mol. Genet. 2012, 21, 2245–2262. https://doi.org/10.1093/hmg/dds040.
- Wan, H.; Wang, Q.; Chen, X.; Zeng, Q.; Shao, Y.; Fang, H.; Liao, X.; Li, H.S.; Liu, M.G.; Xu, T.L.; et al. WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death. Autophagy 2020, 16, 531–547. https://doi.org/10.1080/15548627.2019.1630224.
- B'Chir, W.; Maurin, A.C.; Carraro, V.; Averous, J.; Jousse, C.; Muranishi, Y.; Parry, L.; Stepien, G.; Fafournoux, P.; Bruhat, A. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013, 41, 7683–7699. https://doi.org/10.1093/nar/gkt563.
- Xia, S.W.; Wang, Z.M.; Sun, S.M.; Su, Y.; Li, Z.H.; Shao, J.J.; Tan, S.Z.; Chen, A.P.; Wang, S.J.; Zhang, Z.L.; et al. Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol. Res. 2020, 161, 105218. https://doi.org/10.1016/j.phrs.2020.105218.
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. https://doi.org/10.1038/nrm1155.
- Corbett, E.F.; Michalak, M. Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem. Sci. 2000, 25, 307–311. https://doi.org/10.1016/s0968-0004(00)01588-7.
- Prins, D.; Michalak, M. Organellar calcium buffers. Cold Spring Harb. Perspect. Biol. 2011, 3, a004069. https://doi.org/10.1101/cshperspect.a004069.
- Suzuki, C.K.; Bonifacino, J.S.; Lin, A.Y.; Davis, M.M.; Klausner, R.D. Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca(2+)-dependent association with BiP. J. Cell Biol. 1991, 114, 189–205. https://doi.org/10.1083/jcb.114.2.189.
- Krebs, J.; Agellon, L.B.; Michalak, M. Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem. Biophys. Res. Commun. 2015, 460, 114–121. https://doi.org/10.1016/j.bbrc.2015.02.004.
- Prasad, M.K.; Mohandas, S.; Ramkumar, K.M. Role of ER stress inhibitors in the management of diabetes. Eur. J. Pharmacol. 2022, 922, 174893. https://doi.org/10.1016/j.ejphar.2022.174893.
- Herrema, H.; Guan, D.; Choi, J.W.; Feng, X.; Salazar Hernandez, M.A.; Faruk, F.; Auen, T.; Boudett, E.; Tao, R.; Chun, H.; et al. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab. 2022, 34, 1004–1022 e1008. https://doi.org/10.1016/j.cmet.2022.06.007.
- Clark, A.L.; Urano, F. Endoplasmic reticulum stress in beta cells and autoimmune diabetes. Curr. Opin. Immunol. 2016, 43, 60–66. https://doi.org/10.1016/j.coi.2016.09.006.
- Evans-Molina, C.; Hatanaka, M.; Mirmira, R.G. Lost in translation: Endoplasmic reticulum stress and the decline of beta-cell health in diabetes mellitus. Diabetes Obes. Metab. 2013, 15, 159–169. https://doi.org/10.1111/dom.12163.
- Sun, J.; Cui, J.; He, Q.; Chen, Z.; Arvan, P.; Liu, M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol. Aspects Med. 2015, 42, 105–118. https://doi.org/10.1016/j.mam.2015.01.001.
- Klyosova, E.; Azarova, I.; Buikin, S.; Polonikov, A. Differentially Expressed Genes Regulating Glutathione Metabolism, Protein-Folding, and Unfolded Protein Response in Pancreatic beta-Cells in Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 12059. https://doi.org/10.3390/ijms241512059.
- Marrocco, V.; Tran, T.; Zhu, S.; Choi, S.H.; Gamo, A.M.; Li, S.; Fu, Q.; Cunado, M.D.; Roland, J.; Hull, M.; et al. A small molecule UPR modulator for diabetes identified by high throughput screening. Acta Pharm. Sin. B 2021, 11, 3983–3993. https://doi.org/10.1016/j.apsb.2021.05.018.
- Lee, H.; Sahin, G.S.; Chen, C.W.; Sonthalia, S.; Canas, S.M.; Oktay, H.Z.; Duckworth, A.T.; Brawerman, G.; Thompson, P.J.; Hatzoglou, M.; et al. Stress-induced beta cell early senescence confers protection against type 1 diabetes. Cell Metab. 2023, 35, 2200–2215 e2209. https://doi.org/10.1016/j.cmet.2023.10.014.
- Guo, R.; Zhang, Y.; Turdi, S.; Ren, J. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: Role of autophagy. Biochim. Biophys. Acta 2013, 1832, 1136–1148. https://doi.org/10.1016/j.bbadis.2013.03.013.
- Uranga, R.M.; Keller, J.N. The Complex Interactions Between Obesity, Metabolism and the Brain. Front. Neurosci. 2019, 13, 513. https://doi.org/10.3389/fnins.2019.00513.
- Ajoolabady, A.; Aslkhodapasandhokmabad, H.; Aghanejad, A.; Zhang, Y.; Ren, J. Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Res. Rev. 2020, 62, 101129. https://doi.org/10.1016/j.arr.2020.101129.
- Ajoolabady, A.; Aghanejad, A.; Bi, Y.; Zhang, Y.; Aslkhodapasandhukmabad, H.; Abhari, A.; Ren, J. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188366. https://doi.org/10.1016/j.bbcan.2020.188366.
- Pei, Z.; Liu, Y.; Liu, S.; Jin, W.; Luo, Y.; Sun, M.; Duan, Y.; Ajoolabady, A.; Sowers, J.R.; Fang, Y.; et al. FUNDC1 insufficiency sensitizes high fat diet intake-induced cardiac remodeling and contractile anomaly through ACSL4-mediated ferroptosis. Metabolism 2021, 122, 154840. https://doi.org/10.1016/j.metabol.2021.154840.
- Ren, J.; Sun, M.; Zhou, H.; Ajoolabady, A.; Zhou, Y.; Tao, J.; Sowers, J.R.; Zhang, Y. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci. Adv. 2020, 6, eabc8561. https://doi.org/10.1126/sciadv.abc8561.
- Engin, A. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv. Exp. Med. Biol. 2017, 960, 221–245. https://doi.org/10.1007/978-3-319-48382-5_9.
- Chen, Y.; Wu, Z.; Huang, S.; Wang, X.; He, S.; Liu, L.; Hu, Y.; Chen, L.; Chen, P.; Liu, S.; et al. Adipocyte IRE1alpha promotes PGC1alpha mRNA decay and restrains adaptive thermogenesis. Nat. Metab. 2022, 4, 1166–1184. https://doi.org/10.1038/s42255-022-00631-8.
- Baba, B.; Caliskan, M.; Boyuk, G.; Hacisevki, A. Chemical Chaperone PBA Attenuates ER Stress and Upregulates SOCS3 Expression as a Regulator of Leptin Signaling. Biochemistry 2021, 86, 480–488. https://doi.org/10.1134/S0006297921040088.
- Engin, A. Non-Alcoholic Fatty Liver Disease. Adv. Exp. Med. Biol. 2017, 960, 443–467. https://doi.org/10.1007/978-3-319-48382-5_19.
- Wang, L.; Chen, J.; Ning, C.; Lei, D.; Ren, J. Endoplasmic Reticulum Stress Related Molecular Mechanisms in Nonalcoholic Fatty Liver Disease (NAFLD). Curr. Drug Targets 2018, 19, 1087–1094. https://doi.org/10.2174/1389450118666180516122517.
- Liu, X.; Wang, K.; Wang, L.; Kong, L.; Hou, S.; Wan, Y.; Ma, C.; Chen, J.; Xing, X.; Xing, C.; et al. Hepatocyte leukotriene B4 receptor 1 promotes NAFLD development in obesity. Hepatology 2023, 78, 562–577. https://doi.org/10.1002/hep.32708.
- He, R.; Chen, Y.; Cai, Q. The role of the LTB4-BLT1 axis in health and disease. Pharmacol. Res. 2020, 158, 104857. https://doi.org/10.1016/j.phrs.2020.104857.
- Wang, Q.; Bu, Q.; Liu, M.; Zhang, R.; Gu, J.; Li, L.; Zhou, J.; Liang, Y.; Su, W.; Liu, Z.; et al. XBP1-mediated activation of the STING signalling pathway in macrophages contributes to liver fibrosis progression. JHEP Rep. 2022, 4, 100555. https://doi.org/10.1016/j.jhepr.2022.100555.
- Wang, Q.; Zhou, H.; Bu, Q.; Wei, S.; Li, L.; Zhou, J.; Zhou, S.; Su, W.; Liu, M.; Liu, Z.; et al. Role of XBP1 in regulating the progression of non-alcoholic steatohepatitis. J. Hepatol. 2022, 77, 312–325. https://doi.org/10.1016/j.jhep.2022.02.031.
- Song, X.; Sun, J.; Liu, H.; Mushtaq, A.; Huang, Z.; Li, D.; Zhang, L.; Chen, F. Lycopene Alleviates Endoplasmic Reticulum Stress in Steatohepatitis through Inhibition of the ASK1-JNK Signaling Pathway. J. Agric. Food Chem. 2024, 72, 7832–7844. https://doi.org/10.1021/acs.jafc.3c08108.
- Bolos, M.; Perea, J.R.; Avila, J. Alzheimer's disease as an inflammatory disease. Biomol. Concepts 2017, 8, 37–43. https://doi.org/10.1515/bmc-2016-0029.
- Uddin, M.S.; Yu, W.S.; Lim, L.W. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Res. Rev. 2021, 70, 101417. https://doi.org/10.1016/j.arr.2021.101417.
- Taylor, J.P.; Hardy, J.; Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 2002, 296, 1991–1995. https://doi.org/10.1126/science.1067122.
- Rahman, S.; Jan, A.T.; Ayyagari, A.; Kim, J.; Kim, J.; Minakshi, R. Entanglement of UPR(ER) in Aging Driven Neurodegenerative Diseases. Front. Aging Neurosci. 2017, 9, 341. https://doi.org/10.3389/fnagi.2017.00341.
- Milisav, I.; Suput, D.; Ribaric, S. Unfolded Protein Response and Macroautophagy in Alzheimer's, Parkinson's and Prion Diseases. Molecules 2015, 20, 22718–22756. https://doi.org/10.3390/molecules201219865.
- Casas, C. GRP78 at the Centre of the Stage in Cancer and Neuroprotection. Front. Neurosci. 2017, 11, 177. https://doi.org/10.3389/fnins.2017.00177.
- Selkoe, D.J. Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis. 2001, 3, 75–80. https://doi.org/10.3233/jad-2001-3111.
- Soria Lopez, J.A.; Gonzalez, H.M.; Leger, G.C. Alzheimer's disease. Handb. Clin. Neurol. 2019, 167, 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3.
- Rahman, S.; Archana, A.; Jan, A.T.; Minakshi, R. Dissecting Endoplasmic Reticulum Unfolded Protein Response (UPR(ER)) in Managing Clandestine Modus Operandi of Alzheimer's Disease. Front. Aging Neurosci. 2018, 10, 30. https://doi.org/10.3389/fnagi.2018.00030.
- Cai, Y.; Arikkath, J.; Yang, L.; Guo, M.L.; Periyasamy, P.; Buch, S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 2016, 12, 225–244. https://doi.org/10.1080/15548627.2015.1121360.
- Matus, S.; Glimcher, L.H.; Hetz, C. Protein folding stress in neurodegenerative diseases: A glimpse into the ER. Curr. Opin. Cell Biol. 2011, 23, 239–252. https://doi.org/10.1016/j.ceb.2011.01.003.
- Jankovic, J. Parkinson's disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. https://doi.org/10.1136/jnnp.2007.131045.
- Burre, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Sudhof, T.C. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010, 329, 1663–1667. https://doi.org/10.1126/science.1195227.
- Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of alpha-synuclein. Neuron 2013, 79, 1044–1066. https://doi.org/10.1016/j.neuron.2013.09.004.
- Kim, S.; Kim, D.K.; Jeong, S.; Lee, J. The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. Int. J. Mol. Sci. 2022, 23, 5894. https://doi.org/10.3390/ijms23115894.
- Yan, C.; Liu, J.; Gao, J.; Sun, Y.; Zhang, L.; Song, H.; Xue, L.; Zhan, L.; Gao, G.; Ke, Z.; et al. IRE1 promotes neurodegeneration through autophagy-dependent neuron death in the Drosophila model of Parkinson's disease. Cell Death Dis. 2019, 10, 800. https://doi.org/10.1038/s41419-019-2039-6.
- Maity, S.; Komal, P.; Kumar, V.; Saxena, A.; Tungekar, A.; Chandrasekar, V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington's Disease. Int. J. Mol. Sci. 2022, 23, 780. https://doi.org/10.3390/ijms23020780.
- Reiner, A.; Albin, R.L.; Anderson, K.D.; D'Amato, C.J.; Penney, J.B.; Young, A.B. Differential loss of striatal projection neurons in Huntington disease. Proc. Natl. Acad. Sci. USA 1988, 85, 5733–5737. https://doi.org/10.1073/pnas.85.15.5733.
- Vonsattel, J.P.; Myers, R.H.; Stevens, T.J.; Ferrante, R.J.; Bird, E.D.; Richardson, E.P., Jr. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 1985, 44, 559–577. https://doi.org/10.1097/00005072-198511000-00003.
- Shacham, T.; Patel, C.; Lederkremer, G.Z. PERK Pathway and Neurodegenerative Disease: To Inhibit or to Activate? Biomolecules 2021, 11, 354. https://doi.org/10.3390/biom11030354.
- Kalathur, R.K.; Giner-Lamia, J.; Machado, S.; Barata, T.; Ayasolla, K.R.; Futschik, M.E. The unfolded protein response and its potential role in Huntington's disease elucidated by a systems biology approach. F1000Res 2015, 4, 103. https://doi.org/10.12688/f1000research.6358.2.
- Shenkman, M.; Geva, M.; Gershoni-Emek, N.; Hayden, M.R.; Lederkremer, G.Z. Pridopidine reduces mutant huntingtin-induced endoplasmic reticulum stress by modulation of the Sigma-1 receptor. J. Neurochem. 2021, 158, 467–481. https://doi.org/10.1111/jnc.15366.
- Espina, M.; Di Franco, N.; Branas-Navarro, M.; Navarro, I.R.; Brito, V.; Lopez-Molina, L.; Costas-Insua, C.; Guzman, M.; Gines, S. The GRP78-PERK axis contributes to memory and synaptic impairments in Huntington's disease R6/1 mice. Neurobiol. Dis. 2023, 184, 106225. https://doi.org/10.1016/j.nbd.2023.106225.
- Scheper, W.; Hoozemans, J.J. The unfolded protein response in neurodegenerative diseases: A neuropathological perspective. Acta Neuropathol. 2015, 130, 315–331. https://doi.org/10.1007/s00401-015-1462-8.
- Wate, R.; Ito, H.; Zhang, J.H.; Ohnishi, S.; Nakano, S.; Kusaka, H. Expression of an endoplasmic reticulum-resident chaperone, glucose-regulated stress protein 78, in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol. 2005, 110, 557–562. https://doi.org/10.1007/s00401-005-1080-y.
- Atkin, J.D.; Farg, M.A.; Walker, A.K.; McLean, C.; Tomas, D.; Horne, M.K. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol. Dis. 2008, 30, 400–407. https://doi.org/10.1016/j.nbd.2008.02.009.
- Atkin, J.D.; Farg, M.A.; Turner, B.J.; Tomas, D.; Lysaght, J.A.; Nunan, J.; Rembach, A.; Nagley, P.; Beart, P.M.; Cheema, S.S.; et al. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J. Biol. Chem. 2017, 292, 12007. https://doi.org/10.1074/jbc.A117.603393.
- Oh, Y.K.; Shin, K.S.; Yuan, J.; Kang, S.J. Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells. J. Neurochem. 2008, 104, 993–1005. https://doi.org/10.1111/j.1471-4159.2007.05053.x.
- Prell, T.; Lautenschlager, J.; Grosskreutz, J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 2013, 54, 132–143. https://doi.org/10.1016/j.ceca.2013.05.007.
- Zhao, C.; Liao, Y.; Rahaman, A.; Kumar, V. Towards Understanding the Relationship Between ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis. Front. Aging Neurosci. 2022, 14, 892518. https://doi.org/10.3389/fnagi.2022.892518.
- Patel, S.; Pangarkar, A.; Mahajan, S.; Majumdar, A. Therapeutic potential of endoplasmic reticulum stress inhibitors in the treatment of diabetic peripheral neuropathy. Metab. Brain Dis. 2023, 38, 1841–1856. https://doi.org/10.1007/s11011-023-01239-x.
- Engin, F.; Hotamisligil, G.S. Restoring endoplasmic reticulum function by chemical chaperones: An emerging therapeutic approach for metabolic diseases. Diabetes Obes. Metab. 2010, 12, 108–115. https://doi.org/10.1111/j.1463-1326.2010.01282.x.
- Lupachyk, S.; Watcho, P.; Obrosov, A.A.; Stavniichuk, R.; Obrosova, I.G. Endoplasmic reticulum stress contributes to prediabetic peripheral neuropathy. Exp. Neurol. 2013, 247, 342–348. https://doi.org/10.1016/j.expneurol.2012.11.001.
- Clark, R.S.; Bayir, H.; Chu, C.T.; Alber, S.M.; Kochanek, P.M.; Watkins, S.C. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 2008, 4, 88–90. https://doi.org/10.4161/auto.5173.
- Wolf, M.S.; Bayir, H.; Kochanek, P.M.; Clark, R.S.B. The role of autophagy in acute brain injury: A state of flux? Neurobiol. Dis. 2019, 122, 9–15. https://doi.org/10.1016/j.nbd.2018.04.018.
- Wang, D.Y.; Hong, M.Y.; Pei, J.; Gao, Y.H.; Zheng, Y.; Xu, X. ER stress mediated‑autophagy contributes to neurological dysfunction in traumatic brain injury via the ATF6 UPR signaling pathway. Mol. Med. Rep. 2021, 23, 247. https://doi.org/10.3892/mmr.2021.11886.
- Tang, Y.; Li, J.; Gao, C.; Xu, Y.; Li, Y.; Yu, X.; Wang, J.; Liu, L.; Yao, P. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B. Oxid. Med. Cell Longev. 2016, 2016, 8696587. https://doi.org/10.1155/2016/8696587.
- Hayakawa, M.; Itoh, M.; Ohta, K.; Li, S.; Ueda, M.; Wang, M.X.; Nishida, E.; Islam, S.; Suzuki, C.; Ohzawa, K.; et al. Quercetin reduces eIF2alpha phosphorylation by GADD34 induction. Neurobiol. Aging 2015, 36, 2509–2518. https://doi.org/10.1016/j.neurobiolaging.2015.05.006.
- Jayachandran, P.; Koshy, L.; Sudhakaran, P.R.; Nair, G.M.; Gangaprasad, A.N.; Nair, A.J. 1, 25-(OH)(2)D(3) protects against ER stress and miRNA dysregulation in Mus musculus neurons. Genes. Genomics 2022, 44, 1565–1576. https://doi.org/10.1007/s13258-022-01256-7.
- Chen, Y.; Zhang, H.; Chen, Y.; Zhang, Y.; Shen, M.; Jia, P.; Ji, S.; Wang, T. Resveratrol Alleviates Endoplasmic Reticulum Stress-Associated Hepatic Steatosis and Injury in Mice Challenged with Tunicamycin. Mol. Nutr. Food Res. 2020, 64, e2000105. https://doi.org/10.1002/mnfr.202000105.
- Lin, L.; Liu, G.; Yang, L. Crocin Improves Cognitive Behavior in Rats with Alzheimer’s Disease by Regulating Endoplasmic Reticulum Stress and Apoptosis. Biomed. Res. Int. 2019, 2019, 9454913. https://doi.org/10.1155/2019/9454913.
- Tsai, C.C.; Chen, Y.J.; Yu, H.R.; Huang, L.T.; Tain, Y.L.; Lin, I.C.; Sheen, J.M.; Wang, P.W.; Tiao, M.M. Long term N-acetylcysteine administration rescues liver steatosis via endoplasmic reticulum stress with unfolded protein response in mice. Lipids Health Dis. 2020, 19, 105. https://doi.org/10.1186/s12944-020-01274-y.
- Geng, Y.; Wu, Z.; Buist-Homan, M.; Blokzijl, H.; Moshage, H. Hesperetin protects against palmitate-induced cellular toxicity via induction of GRP78 in hepatocytes. Toxicol. Appl. Pharmacol. 2020, 404, 115183. https://doi.org/10.1016/j.taap.2020.115183.
- Song, L.; Piao, Z.; Yao, L.; Zhang, L.; Lu, Y. Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer's disease rats. Exp. Anim. 2020, 69, 363–373. https://doi.org/10.1538/expanim.19-0146.
- Liang, Y.; Ye, C.; Chen, Y.; Chen, Y.; Diao, S.; Huang, M. Berberine Improves Behavioral and Cognitive Deficits in a Mouse Model of Alzheimer's Disease via Regulation of beta-Amyloid Production and Endoplasmic Reticulum Stress. ACS Chem. Neurosci. 2021, 12, 1894–1904. https://doi.org/10.1021/acschemneuro.0c00808.
- Samanta, S.; Yang, S.; Debnath, B.; Xue, D.; Kuang, Y.; Ramkumar, K.; Lee, A.S.; Ljungman, M.; Neamati, N. The Hydroxyquinoline Analogue YUM70 Inhibits GRP78 to Induce ER Stress-Mediated Apoptosis in Pancreatic Cancer. Cancer Res. 2021, 81, 1883–1895. https://doi.org/10.1158/0008-5472.CAN-20-1540.
- Bronczek, G.A.; Vettorazzi, J.F.; Soares, G.M.; Kurauti, M.A.; Santos, C.; Bonfim, M.F.; Carneiro, E.M.; Balbo, S.L.; Boschero, A.C.; Costa Junior, J.M. The Bile Acid TUDCA Improves Beta-Cell Mass and Reduces Insulin Degradation in Mice With Early-Stage of Type-1 Diabetes. Front. Physiol. 2019, 10, 561. https://doi.org/10.3389/fphys.2019.00561.
- Elia, A.E.; Lalli, S.; Monsurro, M.R.; Sagnelli, A.; Taiello, A.C.; Reggiori, B.; La Bella, V.; Tedeschi, G.; Albanese, A. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2016, 23, 45–52. https://doi.org/10.1111/ene.12664.
- Chen, Y.; Podojil, J.R.; Kunjamma, R.B.; Jones, J.; Weiner, M.; Lin, W.; Miller, S.D.; Popko, B. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain 2019, 142, 344–361. https://doi.org/10.1093/brain/awy322.
- Salvado, L.; Palomer, X.; Barroso, E.; Vazquez-Carrera, M. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol. Metab. 2015, 26, 438–448. https://doi.org/10.1016/j.tem.2015.05.007.
- Sureda, A.; Alizadeh, J.; Nabavi, S.F.; Berindan-Neagoe, I.; Cismaru, C.A.; Jeandet, P.; Los, M.J.; Clementi, E.; Nabavi, S.M.; Ghavami, S. Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur. J. Pharmacol. 2020, 882, 173288. https://doi.org/10.1016/j.ejphar.2020.173288.
- Wang, L.; Popko, B.; Tixier, E.; Roos, R.P. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol. Dis. 2014, 71, 317–324. https://doi.org/10.1016/j.nbd.2014.08.010.
- Stokes, M.E.; Surman, M.D.; Calvo, V.; Surguladze, D.; Li, A.H.; Gasparek, J.; Betzenhauser, M.; Zhu, G.; Du, H.; Rigby, A.C.; et al. Optimization of a Novel Mandelamide-Derived Pyrrolopyrimidine Series of PERK Inhibitors. Pharmaceutics 2022, 14, 2233. https://doi.org/10.3390/pharmaceutics14102233.
- Anto, E.M.; Jayamurthy, P. Tangeretin enhances pancreatic beta-TC-6 function by ameliorating tunicamycin-induced cellular perturbations. Mol. Biol. Rep. 2023, 51, 43. https://doi.org/10.1007/s11033-023-09013-z.
- Blanc, M.; Habbouche, L.; Xiao, P.; Lebeaupin, C.; Janona, M.; Vaillant, N.; Irondelle, M.; Gilleron, J.; Murcy, F.; Rousseau, D.; et al. Bax Inhibitor-1 preserves pancreatic beta-cell proteostasis by limiting proinsulin misfolding and programmed cell death. Cell Death Dis. 2024, 15, 334. https://doi.org/10.1038/s41419-024-06701-x.
- Dhir, N.; Jain, A.; Sharma, A.R.; Prakash, A.; Radotra, B.D.; Medhi, B. PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2a/ATF4/CHOP signaling. Metab. Brain Dis. 2023, 38, 1177–1192. https://doi.org/10.1007/s11011-023-01183-w.
- Bourebaba, L.; Komakula, S.S.B.; Weiss, C.; Adrar, N.; Marycz, K. The PTP1B selective inhibitor MSI-1436 mitigates Tunicamycin-induced ER stress in human hepatocarcinoma cell line through XBP1 splicing modulation. PLoS ONE 2023, 18, e0278566. https://doi.org/10.1371/journal.pone.0278566.
- Kowalczuk, A.; Marycz, K.; Kornicka, J.; Groborz, S.; Meissner, J.; Mularczyk, M. Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. Int. J. Mol. Sci. 2023, 24, 7120. https://doi.org/10.3390/ijms24087120.
- Khater, S.I.; El-Emam, M.M.A.; Abdellatif, H.; Mostafa, M.; Khamis, T.; Soliman, R.H.M.; Ahmed, H.S.; Ali, S.K.; Selim, H.; Alqahtani, L.S.; et al. Lipid nanoparticles of quercetin (QU-Lip) alleviated pancreatic microenvironment in diabetic male rats: The interplay between oxidative stress—unfolded protein response (UPR)—autophagy, and their regulatory miRNA. Life Sci. 2024, 344, 122546. https://doi.org/10.1016/j.lfs.2024.122546.
- Kou, J.J.; Shi, J.Z.; He, Y.Y.; Hao, J.J.; Zhang, H.Y.; Luo, D.M.; Song, J.K.; Yan, Y.; Xie, X.M.; Du, G.H.; et al. Luteolin alleviates cognitive impairment in Alzheimer's disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacol. Sin. 2022, 43, 840–849. https://doi.org/10.1038/s41401-021-00702-8.
- Xu, T.T.; Zhang, Y.; He, J.Y.; Luo, D.; Luo, Y.; Wang, Y.J.; Liu, W.; Wu, J.; Zhao, W.; Fang, J.; et al. Bajijiasu Ameliorates beta-Amyloid-Triggered Endoplasmic Reticulum Stress and Related Pathologies in an Alzheimer's Disease Model. Cell Physiol. Biochem. 2018, 46, 107–117. https://doi.org/10.1159/000488414.
- Dai, Y.; Han, G.; Xu, S.; Yuan, Y.; Zhao, C.; Ma, T. Echinacoside Suppresses Amyloidogenesis and Modulates F-actin Remodeling by Targeting the ER Stress Sensor PERK in a Mouse Model of Alzheimer's Disease. Front. Cell Dev. Biol. 2020, 8, 593659. https://doi.org/10.3389/fcell.2020.593659.
- Mu, J.S.; Lin, H.; Ye, J.X.; Lin, M.; Cui, X.P. Rg1 exhibits neuroprotective effects by inhibiting the endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in a rat model of Alzheimer's disease. Mol. Med. Rep. 2015, 12, 3862–3868. https://doi.org/10.3892/mmr.2015.3853.
- Wu, C.T.; Sheu, M.L.; Tsai, K.S.; Chiang, C.K.; Liu, S.H. Salubrinal, an eIF2alpha dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radic. Biol. Med. 2011, 51, 671–680. https://doi.org/10.1016/j.freeradbiomed.2011.04.038.
- Li, X.; Cheng, Y.; Qin, Y.; Gao, H.; Wang, G.; Song, H.; Wang, Y.; Cai, B. Chrysophanol exerts neuroprotective effects via interfering with endoplasmic reticulum stress apoptotic pathways in cell and animal models of Alzheimer's disease. J. Pharm. Pharmacol. 2022, 74, 32–40. https://doi.org/10.1093/jpp/rgab148.
- Wu, S.A.; Shen, C.; Wei, X.; Zhang, X.; Wang, S.; Chen, X.; Torres, M.; Lu, Y.; Lin, L.L.; Wang, H.H.; et al. The mechanisms to dispose of misfolded proteins in the endoplasmic reticulum of adipocytes. Nat. Commun. 2023, 14, 3132. https://doi.org/10.1038/s41467-023-38690-4.
- Sniegocka, M.; Liccardo, F.; Fazi, F.; Masciarelli, S. Understanding ER homeostasis and the UPR to enhance treatment efficacy of acute myeloid leukemia. Drug Resist. Updat. 2022, 64, 100853. https://doi.org/10.1016/j.drup.2022.100853.
- Lin, T.; Lee, J.E.; Kang, J.W.; Shin, H.Y.; Lee, J.B.; Jin, D.I. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. Int. J. Mol. Sci. 2019, 20, 409. https://doi.org/10.3390/ijms20020409.
- Mariangelo, J.I.E.; Roman, B.; Silvestri, M.A.; Salas, M.; Vittone, L.; Said, M.; Mundina-Weilenmann, C. Chemical chaperones improve the functional recovery of stunned myocardium by attenuating the endoplasmic reticulum stress. Acta Physiol. 2020, 228, e13358. https://doi.org/10.1111/apha.13358.