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Abstract: Everything is connected and thus networks are instrumental in not only modeling complex
systems with many components, but also accommodating knowledge about their components. Broadly
speaking, network learning is an emerging area of machine learning to discover knowledge within net-
works. Although networks have permeated all subjects of sciences, in this study we mainly focus on net-
work learning for biomarker discovery. We first overview methods for traditional network learning
which learn knowledge from networks with centrality analysis. Then, we summarize the network deep
learning, which are powerful machine learning models that integrate networks (graphs) with deep neural
networks. Biomarkers can be placed in proper biological networks as vertices or edges and network
learning applications for biomarker discovery are discussed. We finally point out some promising direc-
tions for future work about network learning.
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1. Introduction

Terminology network learning in this study means an emerging area of machine learning to discover knowl-
edge hidden within networks. Note that by a Google search, one can find a popular terminology networked learning,
which is an online learning method that connects individuals or groups with internet technologies and transfers infor-
mation between educator(s) and learner(s) via internet. Such networked learning is not the topic of this study. Net-
work learning is emerging, yet has rooted in a quite old mathematical branch-graph theory. Terminologies network
and graph thus have the same meaning and are used interchangeably in the contemporary literature. The graph the-
ory has been applied to practical problems since its inception in 1736, when Swiss mathematician Leonhard Euler
used it to solve the real-world problem of how best it is to circumnavigate the seven bridges of Konigsberg [1]. Since
then, graphs have developed into powerful tools for engineered networks, neural networks, information networks,
biological networks, semantic networks, economic networks, social networks, and ecological networks, just to name a
few. An essential factor of this growth is that graphs (networks) can not only model complex systems with many
components, but also contain rich knowledge about their components as parts of a whole. In addition, networks are
also effective instrumental to model unstructured data [2] and to integrate multi-view data [3—5].

A generic (dynamic) network can be represented by a quadruple as follows [6]:

G@) ={V(®),E@):; A1), D(1)} (M

where ¢ represents either simulated or real time; V represents the set of all vertices, also known as nodes; E repre-
sents the set of all edges, also known as links, arcs; A represents an n X n matrix that defines the structure, yielding
topology, and is also called a weight matrix, where n is the number of vertices; D represents a set of equations
describing dynamics of vertices and/or edges with time. In this study, we mainly focus on static network learning, i.e.
learning based on G = (V, E; A), where vertices, edges, and weights don't evolve with time.

In G = (V, E; A), the length of a path is the sum of the weights of the edges on the path. A path from vertex u to
vertex v is the shortest path if its length is the smallest possible among all paths from vertex u to vertex v. The length
of the shortest path from vertex u to vertex v is also called the distance between vertices « and v, and is denoted by
d(u,v). Furthermore, G = (V,E;A) is called an undirected network if A” = A and otherwise a directed network.
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When g;; = 1, it indicates that there is an edge between vertices v; and v;; otherwise, a;; = 0 and A becomes a binary
matrix, which is also called the adjacent matrix of the network. In this case, a static network can be denoted by
G = (V,E). Vertices and edges together are called elements of networks.

A biomarker, or biological marker, is a measurable indicator of some biological states or conditions. According
to their functions, biomarkers can be classified as disease-related biomarkers and drug-related biomarkers. Disease-
related biomarkers can be further divided into three categories: diagnostic biomarkers, predictive biomarkers and
prognostic biomarkers. Diagnostic biomarkers give an indication of the existence of a disease. Predictive biomarkers
are indicators of probable effect of treatment on patients, which can help assess the most likely response to a particu-
lar treatment type. Prognostic biomarkers show how a disease may develop in an individual case regardless of the
type of treatment [7]. Drug-related biomarkers indicate whether a drug is effective in a specific patient and how the
patient's body responds to it. According to their properties, biomarkers can be classified as molecular biomarkers, tis-
sue biomarkers and digital (imaging) biomarkers.

Although a huge amount of biomedical data has been stored in various databases in different types such as the
sequence, expression, association, compared to the complexity of the diseases, the available biomedical data is still
insufficient for the accurate prediction of biomarkers. Typically complex diseases are caused by multiple biomarkers
[8], and there is synthetic lethality between genes [9]. In addition, the best way to understand an individual (e.g.,
biomarkers, drugs, diseases) or a relationship (interactions, associations) between two individuals is placing the indi-
vidual into suitable networks. Therefore, biological networks play an important role in biomarker discovery. With the
development of advanced technologies, various types of biomolecular networks can be constructed, ¢.g. human dis-
ease networks [10, 11], disease gene networks [12], drug-target networks [13], brain networks [14], protein-protein
interaction (PPI) networks [15, 16], drug-drug interaction (DDI) networks [17] and other biological networks [18, 19],
just to name a few. There are also many ad hoc networks constructed with multi-omics data, such as co-expression
networks and similarity networks, in the literature of computational medicine. Rich knowledge contained in these
networks can help understand drugs, diseases, and drug targets and ultimately benefit drug design and disease treat-
ment [20, 21].

Besides genes and proteins, various studies have confirmed that microRNAs (miRNAs), long non-coding
RNAs (IncRNAs), circular RNAs (circRNAs), and Piwi-interacting RNAs play important roles in the occurrence and
development of diseases. Therefore, the identification of these RNA biomarkers could help understand the pathogen-
esis of complex diseases. However, biological experimental verification methods are costly and time-consuming, and
thus computational model-based RNA and disease data analysis methods are promising alternatives for the RNA
biomarker identification. Medical images play an extremely important role in the clinical diagnosis, prognosis, and
treatment of diseases, especially, brain disorders. In this study, we mainly focus on molecular biomarkers (including
genes, proteins, and various RNAs) and imaging biomarkers, which are either disease-related or drug-related.

In past decades, many network learning methods have been developed to mine knowledge about biomarkers in
biological network data. This study is to give a systematic review of network learning and applications for biomarker
discovery as shown in Figure 1. The rest of this paper is organized as follows: We first overview methods for tradi-
tional network learning, which learn knowledge about biomarkers from networks with centrality analysis and their
applications for biomarker discovery in Section 2. Then, we discuss the network deep learning methods (graph con-
volution network learning), which integrate networks (graphs) with deep neural networks, and their applications for
biomarker discovery in Section 3. Other network learning methods, which include network-energy-based methods
and nonnegative matrix factorization (NMF), along with their applications for biomarker discovery are discussed in
Section 4. Finally, in Section 5 we point out some promising directions of future work along network learning.
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Figure 1. The overview of this study.

2. Traditional Network Learning

In this section, we overview traditional network learning methods with a focus on the centrality-based methods
for learning the importance or the specialty of the network elements, as well as their applications in computational
medicine for biomarker discovery.

2.1. Centrality Analysis

Centrality indices are to quantify an intuitive feeling that some network elements are more important than oth-
ers in networks. We classify centrality indices in the literature [22, 23] into two categories: independent centrality and
dependent centrality. The independent centrality of a network element is independent of the centrality of other net-
work elements in the network while the dependent centrality of a network element depends on the centrality of all
network elements in the network.

2.1.1. Independent Centrality

Although many different centrality indices have been proposed in the literature [22, 23], some of them have
certain overlaps for learning knowledge. In the following, we first introduce some widely used independent centrality
indices with the least overlap, including degree centrality, cluster coefficient centrality, information centrality,
betweenness centrality, and control centrality.

(1) Degree Centrality and Strength

The simplest centrality is the degree centrality ¢ (i) = d; of a vertex v; in an undirected graph G = (V, E) where
d; is the number of edges in E that has vertex v; as an endvertex. In a directed network G = (V, E), two variants of the
degree centrality may be appropriate: the in-degree centrality c;p(i) =d (i) and the out-degree centrality
cop(i) = d* (i), where d~ (i) is the number of edges in E with the destination of vertex v; while d* (i) is the number of
edges in E that has the origin of vertex v;. In a weighted undirected network G = (V, E; A), the weighted degree cen-
trality of a vertex v;, which is the sum of weights of edges in E that has the vertex v; as an endvertex, is called the
strength in literature.

(2) Cluster Coefficient Centrality

The clustering coefficient of a vertex v; in a network quantifies how close its neighbors are to being a clique
(complete graph), and can be defined as

2l{(vj,vi) € Elvj,vi € N(v), }

ki(k;—=1) @)

cee() =
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where N(v;) is the neighborhood of vertex v;, i.e., N(v;) = {v;|(v;,v;) € E} and k; = [N'(v;)| is the number of vertices
n N).

(3) Closeness Centrality and Information Centrality

The closeness centrality of vertex v; is defined as the reciprocal of the total distance between vertex v; and any
other vertex v; as follows

3)

n
ceili) = 2vevd(vi,v))
When an undirected network is disconnected, the closeness centrality is useless as its value for all vertices will be
zero. To mitigate this drawback, the information centrality has been designed.
The information [;; that can be transmitted between two vertices v; and v; is defined as the reciprocal of the
topological distance d(i, j), i.e., I;; = 1/d(v;,v;). The information centrality of the vertex v; is defined as the har-
monic average information /;; over a network as follows:

-1
) 1 1
er(i) = {—Z—} @
n & 1, ij
J#FL g

which is to measure information that can be transmitted between vertex v; and any other vertex in a network. It can
be seen that when an undirected network is connected, the closeness centrality of its element is exactly the same as its
information centrality. However, when an undirected network is disconnected, the information centrality still makes
sense while the closeness centrality does not.

(4) Betweenness Centrality
The betweenness centrality of vertex v; can be defined as follows:
cpli)= )" Y 8D, Syl === )
e T

where o (i) denotes the number of all shortest paths between vertices s and ¢ that contain vertex v; while o, denotes
the number of all shortest paths between vertices s and ¢, and thus §,,(i) is the fraction of shortest paths between ver-
tices s and ¢ that contain vertex v;. Similarly, the betweenness centrality of edge e can be defined as follows:

@)=Y 6,0, duler= T ®)
A !

where o ;(e) denotes the number of all shortest paths between vertices s and ¢ that contain edge e while o; denotes
the number of all shortest paths between vertices s and 7, and thus d,(e) is the fraction of shortest paths between ver-
tices s and ¢ that contain edge e.

(5) Control Centrality

Letting A be the n X n adjacent matrix of a network, the control centrality of vertex v; can be defined as follows
[24,25]:

cco=rank(C?),  CY =[e;,Ae;,--+, A" ;] (7)

where e; is the i-th column of the n X n identity matrix. The control centrality measures the controllability [26] of a
node on which a control signal is actuated.

A vertex is called a hub if its centrality value in a network is relatively higher than a user-specified threshold.
For different centralities, different sets of hubs may be produced from the same network. For a network G = (V, E)
and any centrality ¢, we can define the global centrality of G as follows:

1
(G)=— 3 cw) @®)

ueV

2.1.2. Dependent Centrality

The independent centralities of one vertex are independent of other vertices. Actually, it is reasonable that the
more central a vertex is, the more central its neighbors are and vice versa. This kind of measure is called the depen-
dent centrality. In the following, centrality values are denoted as vectors, each of whose component is corresponding
to the centrality of one vertex in the network. All dependent centralities are typically calculated by solving linear sys-
tems.
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(1) Katz Centrality

The Katz centrality is to measure the impact of a vertex v; on any vertex v; of a network. Intuitively, vertex v;
can impact on any vertex v; if there is a path from vertex v; to vertex v;. In addition, the longer the path between two
vertices v; and v; is, the smaller the impact of vertex v; on v; should be. To take the effect of path length into consid-
eration, a damping factor 0 < @ < 1 is introduced. As a result, the Katz centrality (cx) can be mathematically defined
as follows:

)= > a*ah ©)
k=0 j=1

where A is the adjacency matrix of the network. Note that (A¥);; is the number of paths from vertex v; to vertex v;
with the length of k. In the matrix-vector format, we have

¢ =) dMAT 1, (10)
k=0

where 17 is the n-dimensional vector where every entry is 1. Let A; be the largest eigenvalue of matrix A, which is a
positive number, and let @ < 1/4; < 1. Then, we have

Cp = Z A1, =U-aAT) ', or I —aAT)ck = 1, (11)
k=0
(2) Eigenvector Centrality
Eigenvector centrality assumes that the centrality value cg;(i) of vertex v; depends on the values of each adja-
cent vertex, specifically it is proportional to the sum of the values of each adjacent vertex. Therefore, in the matrix-
vector format we have the following equation:

CE[ZCL'ACE,' OI'ACE,‘ZACE,‘ (12)

where A = 1/a. It can be proved that if a network is undirected and connected, then the largest eigenvalue A, of A is
simple and all entries of the eigenvector corresponding to A; are of the same sign. Therefore, the eigenvector central-
ity is computed as the scaled eigenvector corresponding to A;.

(3) Hubbel Centrality

Further to the eigenvector centrality, Hubbel also took some prior preference information about the centrality
value (represented by a column vector E) into account. As a result, the Hubbel centrality cy, satisfies the following
equation

cuw = E+aAcy, (13)

If there is no specific prior preference information, £ can be taken as 1,,. Then, we have

Ccuu =1, +aAcy, or I —aA)cy, = 1, (14)

which is the same as the Katz centrality for undirected networks.

(4) PageRank Centrality

The initial PageRank centrality cpz can be viewed as the extension of the eigenvalue centrality by taking the
degree of neighbor vertices into account as follows:

k) =d ) C;f((:)) (15)
uel’;

where cpg(u) is the PageRank centrality value of vertex u and d is a proportional constant. d*(u) is the out degree of
vertex u and I, is the set of vertices pointing to vertex v. In the matrix-vector format, the initial Pagerank centrality

v

can be expressed as

CPR=dPCPR (16)

where the transition matrix P = (p;;),xx 18 calculated as follows:

1
—, if(v,v)€EE
pij=13 d*()) ! (17)
0, othervises
Therefore, cp is actually the scaled eigenvector of the transition matrix P. The final PageRank centrality can be
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viewed as the type of the Hubbel centrality in that the adjacent matrix is replaced with the transition matrix as fol-
lows:

1
CpdePCPR‘F(l—d);n (18)

The random walk starting with a vertex on a network is actually to calculate the PageRank centrality of that
vertex [27,28]. Especially, random walk-based algorithms, such as node2vec [28], have been widely used for
extracting features of vertices in networks. The above presented dependent centralities follow the idea of positive
feedback: the centrality of a vertex is higher if it is connected to other high-valued vertices. In addition, the eigenvec-
tor centrality is the fundamental dependent centrality as other dependent centrality can be viewed as its generalization
in different ways.

2.2. Applications

2.2.1. Disease-Related Biomarker Discovery

Jeong et al. [29] conclude that the most highly connected proteins in the cell are the most important for its sur-
vival. Han et al. [30] define two types of hubs: party hubs and date hubs, based on the degree centrality in PPI net-
works, and uncover that these hubs play important biological roles. With various other evidence [31, 32] about the
relationships between the centrality and biological roles of network elements, many centralities have been applied to
learn biological knowledge from biological networks in past decades. Essential proteins are indispensable proteins for
supporting cellular life and thus are important biomarkers [9]. The degree centrality, information centrality, between-
ness centrality and other dependent centralities have been used to predict essential proteins from PPI networks with
great accuracy [33, 34]. The fundamental dependent centrality and eigenvector centrality have been used to predict
essential proteins [34—38]. Tang et al. [39] develop a software package to predict essential proteins based on several
commonly used centralities, including degree centrality, betweenness centrality, information centrality, and eigenvec-
tor centrality, to name a few. Understanding the role of genetics in diseases is one of the most important goals of the
biological sciences. However, determining disease-associated genes requires laborious experiments and thus the cen-
trality indices can be used to predict good candidate disease-associated genes before experimental analysis [40]. The
random walk can be used to either directly predict disease-related biomarkers [41,42] or to learn the features of
biomarkers for some machine learning-based prediction methods [43, 44]. Recently, Gentili et al. [5] use the random
walk to integrate multi-omics data for disease gene prioritization.

2.2.2. Drug-Related Biomarker Discovery

Traditional drug discovery strategies are not only high monetary-demanding, but also time-consuming. Drug
repositioning (also called drug repurposing) is now becoming an effective drug discovery strategy, which involves the
investigation on existing drugs for treating different diseases [45]. In drug repositioning [46, 47], a key is to select a
list of genes called the gene signature to represent a disease. By placing genes in proper networks, a number of cen-
tralities have been used to create gene signatures [48, 49] from gene networks. Drug targets, which are important
biomarkers, can be interpreted as steering nodes in controlled biomolecular networks while drugs are viewed as the
control signals. Wu et al. [50] develop some seminal theories for the controllability of complex biomolecular net-
works and design several variants of the control centrality, which have been applied to identify drug targets from reg-
ulatory biological networks [51-53].

2.2.3. Digital Biomarkers for Brain Disorders

Interconnections of structurally segregated and functionally specialized regions of the human cerebral cortex can
be represented by structural brain networks based on structural brain images [54—57]. The analysis of the large-scale
structural brain networks has revealed that brain regions within the structural core share with high degree, strength,
and betweenness centrality [58]. Both remitted geriatric depression (RGD) and amnestic mild cognitive impairment
(aMCI) are associated with a high risk of developing Alzheimer's Disease (AD). The analysis of structural brain net-
works with several centralities finds some direct evidence for the association of a great majority of convergent con-
nectivity and a minority of divergent connectivity between RGD and aMCI patients, which may lead to increased
attention in defining a population at risk of AD [59]. Gu et al. [60] apply the control centrality to structural brain net-
works to the region of brains with special cognitive functions, which can be potential target regions for treating brain
disorders. With the proper parcellation scheme of the human cerebral cortex, functional brain networks can be con-
structed based on functional brain magnetic resonance imaging (MRI) images . Mostafa et al. [61] and Yin et al. [62]
define the features of patients from their functional brain networks by integrating the centralities with other informa-
tion to develop the methods for diagnosis of autism spectrum disorder.
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3. Network Deep Learning

Convolutional neural network (CNN)-based deep learning has been very successful in the computer vision
domain and natural language processing domain as the imaging data and text data are well structured and the neigh-
borhood for the convolutional operation is obvious. By utilizing the neighborhood relations of vertices in a network
(graph) [63] for the convolutional operation, the numerous types of graph convolutional networks (GCNs) [64, 65]
have been proposed, which can be classified as spatial-based GCNs and spectral-based GCNSs.

3.1. Spatial-Based GCN

Analogous to the convolutional operation of a conventional CNN on an image, the spatial-based graph convo-
lutions convolve the features of a central vertex with the features of its neighbors to derive the updated features for
the central vertex. The spatial graph convolutional operation essentially propagates vertex information along edges
across a whole graph. The graph convolution for vertex u at the pth layer is designed as [66]:

Y =x @+ Y KW (19
veN (u)
W) = FGP WO, (20)

where x”(u) is the feature vector of vertex u at the pth layer, and y”(u) is a mediate vector with the same dimension
as x”(u). N'(u) is the set of all neighbor vertices of vertex u, |N(u)| is the number of vertices in N (u), f(-) is an acti-
vation function and @\l;\’(u)l is the weight matrix for vertices with the same degree as |N(u)| at the pth layer. However,
for large graphs, the number of unique values of vertex degree is often very large. Consequently, there are too many
weight matrices to be learned at each layer, possibly leading to the overfitting problem.

In addition, as the number of neighbors of a vertex can vary from one to a thousand or even larger, it is ineffi-
cient to take the full size of a vertex’s neighborhood. GraphSage [67] adopts sampling to obtain a fixed number of
neighbors for each node and replaces Equation (19) by a general aggregate operation, and the graph convolution is
performed by

V() = Agg, (P (1), Vv € S v @1

) = fOP w)6) (22)

where Agg, is an aggregation function at the pth layer, and S x(,) is a random sample of the node v’s neighbors. The
aggregation function should be invariant to the permutations of node orderings such as a mean, sum or max function
[64, 68]. Note that in Equation (22) the weight matrix @ does not depend on the vertex degree. As a result, the num-
ber of learnable parameters is greatly reduced and the overfitting problem can be mitigated.

3.2. Spectral-Based Variational Graph Autoencoder

The autoencoder (AE) and its variant variational autoencoder(VAE) are effective tools to learn the hidden fea-
tures from raw data (or features) [69]. Kipf and Welling [70] propose a two-layer variational graph autoencoder
(VGAE) that extends VAE to graphs for the first time. Consider an undirected, unweighted graph G = (V, E) with
n = |V| vertices nodes. Let A be the adjacency matrix of G and D be its degree matrix. Furthermore, let A be an
n X f matrix consisting of hidden features of all vertices to be learned and X be an n X d matrix consisting of raw
features of all vertices. VGAE includes two parts: the inference model and generative model, as follows [70].

3.2.1. Inference Model

g(HIX,A) = | ] Jathilx.A), with qhilX, A) = N, diag(7)) (23)

i=1 j=1

where ¢ = GCN,(X,A) is the matrix of mean vectors y;, similarly logo- = GCN,(X,A). The two layer spectral-
based GCN is defined as GCN(X,A) = AReLUAXW,)W, with the weight matrices W;. GCN,(X,A) and
GCN,(X,A) share the first layer parameters W,. ReLU(-) = max(0,-) and A = D'/2AD~1/2 is the symmetrically
normalized adjacency matrix.

3.2.2. Generative Model

pal) = [ [ | ptithi by, with pAs; = 1, b)) = o (6 hy) (24)

i=1 j=1
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where o(+) is the logistic sigmoid function. The VGAE optimizes the variational lower bound £ with respect to the
parameters W;:

L =Eyupxa [logp(AlH)] - KL [g(H|X, A)l| p(H)] (25)

where KL [¢(-)||p(-)] is the Kullback-Leibler divergence between two distributions g(---) and p(-) and a Gaussian
prior p(H) = []; p(h:) = [1; N(h:[0, 1)

As GCNs can capture the nonlinear relationship among diseases, drugs and biomarkers in biological networks,
more and more GCN-based methods have been proposed for biomarker discovery.

3.2.3. Disease-Related Biomarker Discovery

Singh and Lio [71] propose a constrained VGAE variant for predicting disease-gene associations. Wang X. et
al. [72] define a new cluster loss function and a dropout mechanism based on the GCN and graph embedding method
to improve the generalization ability for predicting gene-disease associations. In order to analyze the underlying
mechanism of cancer, Schulte-Sasse et al. [73] design GCNs for classifying and predicting cancer genes. Cai et al.
[74] propose a GCN based on fine-grained edge dropout and coarse-grained node dropout to reduce the over-fitting in
sparse graphs for predicting synthetic lethality in human cancers. Chereda et al. [75] combine the PPI network and
gene expression data for patients and utilize GCN to classify the vertices in the patient’s sub-network for predicting
breast cancer metastasis. Rhee et al. [76] propose a hybrid approach of relation networks and localized graph convo-
lutional filtering for breast cancer subtype classification.

Pan and Shen [77] propose a semi-supervised multi-label graph convolution model (DimiG), which does not
rely on known association information between miRNAs and diseases to indirectly predict the association between
miRNAs and diseases. Li J. et al. [78] design a GCN to learn the feature representations of miRNAs and diseases
from the miRNA functional similarity network and disease semantic similarity network, respectively, to predict all
miRNAs related to breast cancer without any known related miRNAs. Li C. et al. [79] integrate miRNA disease,
miRNA gene, disease—gene, and PPI networks to extract the features for predicting miRNA disease associa-
tions. Using the FastGCN algorithm and the Forest by Penalizing Attributes (Forest PA) classifier, Wang L. et
al. [80] can accurately predict potential circRNA disease associations. Wu et al. [81] propose a graph autoencoder to
learn the feature representation of IncRNAs and diseases from the bipartite graph associated with IncRNA disease,
and the score of the IncRNA disease interaction was calculated from the inner product of the two potential factor vec-
tors. Ding et al. [82] use VGAE to learn the features of miRNAs and diseases from the heterogeneous networks con-
sisting of miRNA similarity network, disease similarity network and known miRNA disease association network for
predicting potential miRNA disease associations. In the prediction of disease-related RNAs with limited known data,
the integration of multi-view information can help us understand complex biological networks more comprehen-
sively. Ding et al. [83] further design a multi-view VGAE, combined with matrix factorization to predict potential
miRNA-disease associations. In addition, the Laplacian matrices are incorporated with a deep factorization machine
to predict miRNA-disease associations [84].

3.2.4. Drug-Related Biomarker Discovery

When a drug is taken with another drug, the expected efficacy of drugs may be significantly changed. There-
fore, research on drug-drug interaction (DDI) is essential to reduce the occurrence of adverse drug events and maxi-
mize the synergistic benefits in the treatment of diseases. Zitnik et al. [93] predict the side effects between drugs from
a multi-modal heterogeneous network consisting of PPL, drug-protein targets, and drug-drug interactions, where each
side effect is represented by a different edge. Ma et al. [94] propose a framework of a multi-view drug graph encoder
based on the attention mechanism, which is used to measure the drug similarity. Wang F. et al. [95] propose a GCN
with multiple graph kernels for predicting drug-drug interactions.

The accurate structure prediction can fully clarify the biological mechanism of protein action on a molecular
scale, and its application in drug development is of great significance. However. Compared to CNN-based methods,
GCN-based methods have shown more powerful capabilities in learning the effective structure of proteins from sim-
plified graphical representations [85]. Zamora-Resendiz and Crivelli [86] propose a spatial GCN for learning protein
structures with the natural spatial representation of molecular structures. Gligorijevic et al. [87] model the protein
structure as a graph to predict the protein function based on GCNs. Feng et al. [88] introduce a GCN into drug target
identification by learning the molecular structure information of drugs. Tran et al. [89] propose a GCN-based frame-
work to learn representations of the drugs and targets for predicting drug-target interactions.

The combination of genomics data and drug information for drug response prediction has promoted the devel-
opment of personalized medicine. Huang et al. [90] combine a GCN with an autoencoder to predict the association
between miRNA and drug resistance. Liu Q. et al. [91] predict the therapeutic effect of drugs on cancer cells by con-
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structing a cancer cell information sub-network and a drug structure sub-network. Considering the complexity of can-
cer factors, Singha et al. [92] integrate biological network, genomics, inhibitor analysis, and disease—gene asso-
ciation data into large heterogeneous networks. Multiple graph convolution blocks and attention propagation
are used for predicting the effect of pharmacotherapy.

3.2.5. Image Biomarker Discovery for Brain Disorders

Before GCNs are introduced, CNN-based image analysis has been widely used in various studies, especially in
brain image analysis [96—99]. Actually, image data can be represented as a graph structure appropriate for the use of
GCNs. Therefore, GCNs have many applications in the field of medical imaging analysis. Parisot et al. [100] pro-
pose a framework to exploit GCN and involves representing populations as a sparse graph, where its vertices are
associated with imaging-based feature vectors, while phenotypic information is integrated as edge weights and
applied to study autism spectrum disorder and Alzheimer’s disease. Gopinath et al. [101] propose an approach to
enable direct learning of surface data across compatible surface bases and its superiority is illustrated with applica-
tions to brain parcellation.

Ktena et al. [102] exploit concepts of graph convolutions to estimate the similarity between irregular graphs
which is alter applied to study the structural or functional connections within the brain. Zhai et al. [103] construct a
generative model using graph convolution and VAE to predict the abnormal areas of pulmonary artery-vein. In order
to lift the restrictions of fixed graphic structure for a model, Zhang and Pierre [104] propose a spatial GCN-based
learning model to classify different brain connections and predict the association between brain connection sub-net-
works and diseases. Yang et al. [105] integrate different modalities of medical imaging (both brain structural and
functional MRIs) with GCNs for predicting bipolar disorder.

4. Other Methods

4.1. Network Energy-Based Methods

Consider a network G = (V, E) with some of its vertices labelled as 1 or 0 and others unlabelled vertices. Based
on Boltzmann principle and Ising model in the statistic physics, Chen et al. define the network energy with vertex
labels and edges and then develop the network energy-based method for calculating the possibility of vertex v; being
labeled as 1, as follows [3].

1

Cne(i) = 1 +exp(_[a+ (ﬂ— l)Mio + ()/_ﬁ)le]) (26)

where M,y and M;, are the numbers of neighbors of vertex v; with label O and 1, respectively, and can be calculated as

Mi():Za,-j(l—xj) and M,‘| =Zal~jxj (27)

v,eV v,eV

where x; € {0, 1} is the labelled value of vertex v; and a;; is the (7, j)-entry of the adjacent matrix of the network.

Network energy-based centrality can be viewed as the extension of classical vitality measures as it quantifies the
difference of the network energy between two possible labels of a network element. Different from previously intro-
duced centrality, the network energy-based methods contain the trainable parameters «,(, and y. In addition, as the
network energy is a scalar, the energy of multiple networks can be added together. Therefore, the network energy-
based methods on a single network can be straightforwardly extended to multiple networks [3, 4].

Chen et al. have applied the network energy-based methods based on both single network and multiple net-
works to identify disease-associated genes [3, 106—108]. Note that in Equation (26), only the information of direct
neighbors of vertex v; is used. To take the information of indirect neighbors into account, Chen et al. design a net-
work energy-based method with a network kernel for identifying disease genes [109]. Let w = [a,8— 1,y —B]" be
the learnable parameter vector and x; = [1, My, M;;]7 be the feature vector of vertex v;. Then, network energy-based
method (26) can be expressed as follows:

1

1+exp(—wTx;) (28)

Cre(D) =

Luo et al. define the vertex feature vector different from x; = [1, M;y, M;;]” and use the generalized centrality
with the expression of Equation (28) to predict disease genes [110, 111]. Ding et al. use the random walk to get the
features of vertices and use the expression Equation (28) to predict disease-associated circRNAs [43].

4.2. Matrix Factorization-Based Methods
As the entries of the adjacent matrix of an unweighted network are either O or 1, the adjacent matrices can be
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viewed as nonnegative matrices. Therefore, the nonnegative matrix factorization (NMF) can be used to learn the fea-
tures of network elements as inputs of machine learning methods for downstream analysis. Mathematically, given a
nonnegative matrix A e R, and a positive integer r < min{n,m}, NMF tries to find two nonnegative matrices
U € R™ and V € R"™ such that

A= UVT, (29)

There are several ways to measure the best approximation of A by UV, one of which has widely been used is

minimizing the Euclidean distance between A and UV as follows [112, 113]:
S o

bjecto U 0.vab (30)
where || - || is the Frobenius norm of a matrix and > 0 stands for "entry-wise greater or equal to zero". Each row vec-
tor of matrices U and V can be explained as the feature vector network vertices. For example, consider A € R™” to
be the adjacent matrix of the associate network of n diseases and m genes. Then, the i-th row vector of matrix U is
the »-dimensional feature vector of disease i while the j-th row vector of matrix V is the r-dimensional feature vec-
tor of gene j. In the literature, NMF is often used for learning the features of network elements for clustering
[114-116].

A could be a symmetric matrix when it presents the adjacent matrix of interaction networks such as PPI net-
works [16] and (DDI) networks [17]. Then, symmetrical nonnegative matrix factorization method [117] can be used
to learn the features of network elements. The optimization formulation of NMF (27) can also integrate other infor-
mation about the elements of a network to learn more reasonable features. For example, let S be the adjacent matrix
of the similarity network for elements corresponding to rows in A while S ¢ be the adjacent matrix of the similarity
network for elements corresponding to columns in A. Then, the optimization problem can be formulated as follows:

minimize A= UVT|% +tr (UTLgU) +tr (VI LcV)

31
subject to U>0,V=0 @D

where tr (-) is the trace of a matrix. Ly and L. are the Laplace matrice of the similarity networks for elements corre-
sponding to rows and columns, respectively.

In the early years, Pascual-Montano et al. develop a software package for NMF and applications in biology
[118] while Tian et al. review the matrix decomposition methods in bioinformatics [119], which includes NMF and
applications for biomarker discovery. Recently, Fujita et al. integrate NMF and pathway signature analysis for
biomarker discovery [120]. Jamali et al. develop NMF methods for predicting drug-related biomarkers (microRNA)
[121] and proteins [122]. Luo et al. apply NMF to predict disease-related biomarkers (genes) [123]. Lin and Ma pre-
dict disease-related biomarkers (IncRNA) in heterogeneous networks with co-regularized NMF [124]. Peng et al.
develop Rnmflp for predicting disease-related biomarkers (circRNAs) based on robust NMF and label propagation
[125].

NMF of adjacent matrices of networks has been extended in two different ways for biomarker discovery. Tra-
ditional NMF only involves the multiplications and additions, which is called linear factorization, and only has one
hidden layer [69]. One way to extend the linear NMF is to introduce nonlinear factorization. Bayesian or logistic
matrix factorization [69] is one of the widely used nonlinear NMF for biomarker discovery. Chen et al. use Bayesian
NMF for predicting disease-related biomarkers (miRNA) [126]. Furthermore, Ding et al. develop a deep belief net-
work-based matrix factorization model with multiple layers and nonlinear transformation for predicting disease-
related biomarkers (miRNA) [127]. Networks with one or two types of vertices can be represented by planar graphs
and their adjacent matrices are two-dimensional tensors. Networks with more than two types of vertices are repre-
sented by multi-dimensional graphs and as a result, their adjacent matrices are high-dimensional tensors. Another way
to extend NMF for adjacent matrices of networks is to design the nonnegative high-dimensional tensor factorization.
Jamali et al. construct a three-dimensional graph with three types of vertices: drugs, targets, and diseases, and develop
a nonnegative tensor decomposition method for drug repositioning [ 128].

5. Discussions and Future Directions

A pair of vertices in a network, which forms an edge, could play a very important role in many biological pro-
cesses, including the development of diseases [129]. The studies in [9] show that synthetic lethality between two
genes can personalize targeted therapies. Most centralities for vertices can be also defined for edges, and edge cen-
tralities have been used to predict essential proteins [130]. Luo et al. [131] use the random walk (node2vec) to learn
the features of disease gene association from networks for a deep learning model to predict disease-related biomark-
ers. However, compared to vertex centralities, edge centralities have been paid much less attention to in the existing
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literature of network learning. Therefore, network learning for edges can be a promising direction for drug discovery.
If genes are mapped in some proper networks, the lethality between two genes can be viewed to study the centralities
of edges in such networks.

Biological networks are typically dynamics. For example, some edges appearing at one-time point (or subcellu-
lar localization) may disappear at another time point (or one subcellular localization) in PPI networks [132—134]. The
traditional centrality-based methods have been applied to dynamic biological networks to learn the knowledge for
biomarker discovery [135, 136]. Another promising direction for network learning is to combine dynamic biological
networks with deep neural networks to learn the properties or features of network elements for drug discovery. Net-
work biology is useful for modeling complex biological phenomena [137] and has attracted attention with the advent
of novel network (especially deep) learning methods. Similar to other deep learning methods, network deep learning
often suffers from the lack of interpretability. However, the interpretability of network learning models could be the
top priority in the domain of biomarker discovery. The third promising direction is to increase the interpretability of
network deep learning models for biomarker discovery by incorporating more biological knowledge into models.
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