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Abstract: The disassembly complexity of end-of-life products increases continuously. Traditional meth-
ods are facing difficulties in solving the decision-making and control problems of disassembly opera-
tions. On the other hand, the latest development in reinforcement learning makes it more feasible to solve
such kind of complex problems. Inspired by behaviorism psychology, reinforcement learning is consid-
ered as one of the most promising directions to achieve universal artificial intelligence (AI). In this con-
text, we first review the basic ideas, mathematical models, and various algorithms of reinforcement learn-
ing. Then, we introduce the research progress and application subjects in the field of disassembly and
recycling, such as disassembly sequencing, disassembly line balancing, product transportation, disassem-
bly layout, etc. In addition, the prospects, challenges and applications of reinforcement learning based
disassembly and recycling are also comprehensively analyzed and discussed.
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1. Introduction

With the development of economy and improvement of people's consumption level, people upgrade consumer
products more frequently than ever, and this causes a lot of resource waste. As a consequence, the recycling of waste
products has aroused widespread concerns in society. To meet the needs of consumers, enterprises have to constantly
use the required resources to update their products, resulting in the trash of a large number of out-of-date products.
According to research, there are 1.3 billion tons of metal waste in the world alone, which is expected to grow up to 27
billion tons by 2050 [1,2]. To solve the severe resource and environmental problems faced by the manufacturing
industry, enterprises need to consider the environmental impact and resource efficiency [3,4], reduce the environ-
mental hazard of end-of-life (EOL) products, and maximize the synergy between economic benefits and social bene-
fits of enterprises. Therefore, the recycling of waste products has become an important support point for new indus-
try [5-7].

As the first step of remanufacturing, disassembly lines strengthen the utilization of products from the perspec-
tive of manufacturing industry, reduce the cost of remanufacturing, and effectively decrease the average carbon con-
sumption of products [8]. At the same time, as the interface between recycling and remanufacturing, disassembly
lines are affected by many factors [9,10].

The main characteristics are as follows. (1) The different recovery rates of disassembled products bring great
uncertainty to disassembly [11]. (2) The disassembly sequences and technologies required by different products dur-
ing disassembly are greatly different [12]. (3) The layout of different disassembly lines may lead to different work
efficiency and characteristics [13]. (4) The balance problem of the disassembly line and the different structures of the
workstation lead to differences in the model [3,14]. (5) The different pursuit of objective functions, such as maxi-
mum profit and minimum carbon emission, will lead to different objectives [15].

In the face of the above characteristics, previous traditional algorithms, such as pure mathematical models
[16,17], Bellman optimization formulas or heuristic algorithms [18,19], such as the genetic algorithm [20], ant colony

https://www.sciltp.com/journals/ijndi



1JNDI, 2023, 2(1): 1-14. https://doi.org/10.53941/ijndi0201001

algorithm [21], artificial bee colony algorithm need to code or establish complex problem models and need a lot of
iterations to find an excellent feasible solution. In addition, most traditional methods that only consider static environ-
ments also face certain challenges in dealing with environment and condition changes [22].

In order to deal with these problems, more effective methods are needed for the prediction, detection, decision
planning, and parameter optimization of disassembly lines [23,24]. The characteristics of disassembly lines deter-
mine that a solution is needed with fast learning speed, high intelligence, strong expandability, to quickly adjust the
constraints. For example, reinforcement learning (RL) can transform most problems in disassembly lines into Markov
decision-making processes that can be solved by RL algorithms, and simulated through environment settings.

RL is a machine learning method based on the interaction between the agents and environment, and is widely
used in information theory, game theory, automatic control, artificial intelligence (Al), and other fields. The RL is
capable of maintaining a balance between exploration and utilization and has achieved great success in disassembly
sequencing, disassembly layout design, and disassembly line balancing.

Compared with traditional Al methods, RL makes decisions according to the current state and evaluates the
behavior with rewards [25,26], and in contrast to heuristic methods, RL is more stable in terms of model and conver-
gence. In the face of large-scale data problems, RL introduces deep neural networks to evaluate the value function,
which effectively improves the processing ability of complex problems and high-dimensional data. At the same time,
experience playback and asynchronous concurrent methods are introduced in some deep reinforcement learning
(DRL) to accelerate the convergence speed.

In this paper, we aim to discuss various research branches of disassembly lines, analyze the latest problems and
solutions of RL (that have been applied to disassembly lines) in a systematically way, and introduce various algo-
rithms and internal mechanisms of RL applications, advantages, disadvantages and environment settings.

The rest of the paper is as follows. In Section 2, we first describe the problems with disassembly lines and sev-
eral research directions for disassembly lines. In Section 3, the basic model of RL and several typical algorithms are
introduced and classified. In Section 4, some application cases and corresponding analyses of RL in disassembly lines
are presented. In Section 5, the prospects and challenges of RL for disassembly are discussed.

2. Problem Description

After years of exploration, many papers have been published in the field of disassembly lines [27]. These papers
cover a wide range of decision-making, control, and optimization problems in disassembly systems, mainly including
disassembly sequences, disassembly line balance, disassembly line layout, product transportation, etc. This section
reviews some typical disassembly research subjects (Figure 1).

‘ Disassembly lines problem ‘

T

‘ Disassembly sequence ‘ ‘ Disassembly line balance ‘ ‘ Others ‘
‘ Disassembly integrity ‘ l Man-machine combination ‘ l Disassembly the factory layout ‘
‘ Destruction of disassembly ‘ ‘ Worker conditions ‘ ‘ Disassembly parts scheduling ‘
‘ Single or multi-target ‘ ‘ Workstation problem ‘ ‘ Logistics and transportation

‘ Disassembly line environment ‘ ‘ Product problem ‘ ‘ Disassembly robot simulation

Figure 1. Problem classification of disassembly lines.

2.1. Disassembly Sequence

To disassemble a product, we need to figure out the disassembly sequence, select the disassembly method, and
perform the actual disassembly operations. Finding the disassembly sequence is the first step of disassembly process
and also the key part of remanufacturing and waste recycling industry [28]. It can be divided into several categories
according to the factors and conditions to be considered [29].

(1) According to the integrity, disassembly can be divided into complete disassembly and selective disassembly.
Complete disassembly refers to the separation of all parts of a whole EOL product, while selective disassembly only
disassembles the target parts and high-value parts.

(2) These potential possibilities will influence the decision of decomposition sequences. Some operations in the
disassembly process may cause damage to some parts, resulting in changes in the value of the parts. This damage
operation sometimes requires consideration of destructiveness in the disassembly sequence.

(3) The objectives of disassembly. For example, the single objective model with the maximum profit or the
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minimum carbon emission, or the multi-objective model with multiple-objective Pareto solutions.

RL can play a great role in the process of constructing the optimal decision-making strategy for disassembly
sequences. Figure 2 illustrates the process of choosing the existing conditions to obtain the optimal solution [30]. In
[30], RL was used to conceive a disassembly system model (DSM) based on numerical values and precedence con-
ditions, which can quickly learn in the face of high-dimensional data, improve plant efficiency, and provide rapid
feedback for the disassembly process [31]. In [32], a maintenance and disassembly sequence planning based on DRL
was proposed, which combines VR and RL to provide simulation training of disassembly and maintenance, and this
helps greatly reduce both costs of personnel training and disassembly cases.

Selection decision

. X o
— 5 L’ R

Multi round decision making

Figure 2. A case of disassembly sequence.

2.2. Disassembly Line Balancing

The disassembly line balancing problem (DLBP) was first proposed by Gungor and Gupta [33], and has
evolved to be more and more complex. To date, DLBP has become one of the most important topics in the remanu-
facturing field attracting extensive attention from the both academic and industrial communities [34,35].

According to the combination of the BLBP case shown in Figure 3 [33] and the current main research, the main
concerns of BLBP are given as follows.

Components

@ ﬁ @ I:Scrap

EOL products™= recycling

Figure 3. A case of disassembly line balance.

(1) Man-machine combination: the combination of workers and disassembly equipments in the disassembly
line, including the minimization of the time difference, the maximization of efficiency, and the number of man-
machine.

(2) Personnel conditions: the consideration of the technical level, position and rest time of the staff, and even the
physical conditions and personal efficiency [31].

(3) Workstation problems: the concern of the time difference caused by workstation cycles and workstation
efficiency.

(4) Product problems: the time imbalance caused by different times required for disassembly of different parts
within a single product or multiple products, and the disassembly allocation among multiple products.

As one of the main problems of disassembly lines, RL has been applied to the above problems and a large
number of successful cases have been obtained. In [36], the authors solved the multi-robot disassembly line balanc-
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ing problem through RL, and compared and analyzed the results by testing three kinds of DRL. In [37], the authors
used RL and Monte Carlo methods to test the uncertainty on the disassembly lines, highlighting the certainty and uni-
versality of RL in the disassembly line balancing problem.

2.3. Other Applications

RL has also been used in a large number of successful studies on other issues in the field of disassembly lines.
Here are a few examples:

(1) The use of RL in dealing with the problem of disassembly skills in the remanufacturing industry. The skills
required for contact disassembly are summarized with excellent results obtained in [38].

(2) The inventory problem in the disassembly lines of multi-product and multi-demand is studied. The Q-
Learning algorithm and random parameters are used to solve a highly dynamic and uncertain environment [39].

(3) Pai [40] and his team introduced the industrial knowledge graph (IKG) and multi-agent reinforcement learn-
ing (MARL) based on self-x cognitive manufacturing networks to realize self-configuration solutions and task
decomposition, where an example of multi-robot was given to verify accuracy and correctness.

(4) The authors of proposed a control method for a hybrid disassembly system in combination of the RL and
comprehensive modeling method, and such a control method can be directly applied to real-world production sys-
tems. In addition, the potential of RL was proved in two different test cases in comparison with heuristic algorithms.

As mentioned above, RL approaches have many advantages over traditional methods. First of all, the require-
ments of RL on mathematical models are not as high as those of traditional methods. Secondly, RL can realize online
optimization and real-time disassembly control and feedback. Moreover, RL can better face high-dimensional data
and complex environments with faster learning speed. Last but not least, it has been proved by more and more
researchers that the expansibility of RL is far higher than that of traditional methods such as heuristic algorithms.
However, in the field of disassembly lines, RL also faces many challenges. For example, unlike in the field of image
processing, there are not enough standards, unified test cases and comparison index groups to compare and test. The
dynamic environment is mostly simulated by random variables, which is not professional enough. Besides, for mixed
problems in many aspects, it is sometimes difficult to clearly define and divide the state and action of RL.

3. Reinforcement Learning

The development of RL is a long process from proposing to applying, and many classifications have been grad-
ually derived [41], such as value-based RL, policy-based RL, model-based RL, and model-free RL [42,43] (Figure 4).
In Table 1 and Table 2, we compared and distinguished their characteristics to a certain extent, and note that they all
need the five basic elements of RL, namely, the subject, state, action, reward, and environment. This paper mainly
introduces Q-Learning and Deep-Q-Learning (DQN), which are of important significance for RL and hence widely
used in the field of the disassembly production lines. Q-Learning is the basic algorithm of RL and the cornerstone of
most value-based RL [44]. DQN is a typical case from RL to the deep learning technology and has many variations
and improvements [45].

Table 1 Model-free/model-based comparison

Characteristic Model-Based Model-Free
Agent knows all potential rewards for moving from the current state to the next state Yes No
Algorithms that sample only from experience No Yes
High sampling efficiency Yes No
High degree of general-purpose No Yes
Use transition or reward functions Yes No

Table2 Value-based/policy-based comparison

Characteristic Value-Based Policy-Based
Whether it is effective under continuous action No Yes
Learning Polices can be changed No Yes
Tend to be globally optimal Yes No
Tend to be locally optimal No Yes
Directly optimize the policy No Yes
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Figure 4. Classification of reinforcement learning.

3.1. Q-Learning

This section shows the construction process of RL algorithms and discusses the mathematical models of Q-
Learning.

3.1.1. Fundamentals of Q-Learning

In RL, the agent wanders in an unknown environment and tries to maximize its long-term return by performing
operations and receiving rewards. The timing differential control algorithm under the off-track strategy is an impor-
tant breakthrough in the early stage of RL. This algorithm is called Q-Learning algorithm and is a typical value-based
RL. Q is both Q(s;,a;), which is equivalent to the s, state (s, € S) that gets the state value in the current state. The
action a, (a, € A) taken by the agent is based on the known action income expectation, and the environment E is
based on the agent's action feedback (e.g. the new state reached by the action and the corresponding reward r
obtained by the action). The main idea of the algorithm is to obtain a corresponding Q-table through the state S and
behavior A to store the Q value, and proceed according to the obtained Q value study and choice [46].

In Q-Learning, Q-table is a projection of the target environment. Because RL is also a kind of trial-and-error
learning, it can explore and learn knowledge in an unfamiliar environment [47]. Q-Learning uses an agent to interact
with the environment, obtain the best behavior for the current environment faced by the agent or strategy through
multiple trial-and-errors and evaluations, and update the behavior according to the reward feedback until the Q-table
is stable.

The agent, environment, reward, and action can be regarded as a Markov decision process and each process can
be counted as a state s,. m(a,|s,) refers to the strategy of taking action «, in the s, state. P(s,|s;,a,) represents the
probability of the selection action g, in state s, that is required to reach the next state s, 1.

3.1.2. Mathematical Model of Q-Learning
Q-Learning is defined as:

O(sp,a;) < O(spap) +alr +ymax,0(s.1,a41) — O3S, a,)] (D

Therefore, the objective function of Q-Learning is actually to find the expectation of the largest cumulative
reward:

T
Goal : max,rE[ztzoytr(Snat, Sl @

In RL, the five elements that make up the structure of the RL algorithm are: the state set S, action set A, instant
reward r,, attenuation factor y. Given strategy 7, the algorithm goal is to solve the state value function v(rr) (Figure 5).

One of the distinguished features of Q-Learning is that it uses the Temporal-Difference (TD) method for sam-
pling and updating. Compared with the Monte-Carlo (MC) method, TD does not require a complete state sequence,
and it does not need to run a complete state sequence. The state value is evaluated or updated. Because the code is
simple and easy to understand and reform, Q-Learning has been applied in various environments in recent years, such
as multi-product and multi-demand disassembly production line inventory management [48], where dynamic fuzzy Q-
Learning is adopted to adjust the fuzzy inference system on-line superior [49].
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Figure 5. Basic model.

Q-Learning solves the optimal sequence in the Markov decision process through the Bellman equation, in
which the state value function V,(s) is used to judge the value of the current state. Each value of the state is not only
determined by the value of the current state itself, but also the later reachable state. Therefore, the cumulative reward
expectation of the requested state can guide the state value V(s) of the current state s. The Bellman equation of the
state value function is given as follows:

Va(s) = Exlria +lri2 + 3 + 91 1llls, = o] 3)
=E [r +yV(suls = s

Combined with the objective function of Q-Learning, we can get the state action-value function of the cumula-

tive optimal value function V* (s) and Q(s, a):

H
V' () = maxeELY YRS 1, A S )b, 5o = 5] @)

t=0

Ga(5,a) = ExlFii + Y + ¥ + 1A, = a,8, = 5] Q)

where, ¥ in the formulas (7) and (9) is the attenuation coefficient. When the attenuation coefficient 7y is closer to 1, it
means that the corresponding agent can see the value of the future state more clearly, and more attention should be
paid to the cumulative value of subsequent states. When v is close to 0, it means that the agent pays more attention to
the value of the current state, and is more conservative to the farther value. From 0 to 1, the agent looks farther and
farther and pays more attention to future value [50].

V(s) « V(s)+alr +yV(su) = V(s)] (6)
Among them, r;; +yV(s;;1) is called the TD objective function, and r;.1 +y V(s:41) — V(s;) is called the TD
deviation. « is the rewarding decay coefficient of the decay rate y. According to the updated formula of TD(0), we

adopted, the Q value can be derived to obtain the updated formula of Q-Learning, which is also the Q-Learning men-
tioned by the above definition:

O(sp,a,) « Q(sy,a,) + alrm +ymax,,, Q(S1, 1) — Q(ss,a,)] (7

The following is the pseudo-code of Q-Learning:

Algorithm 1 Q-learning Algorithm

Input: episode,y,a, &
Output: Q-table
Initialize Q(sy,a,), for all s, € S,a; € A, arbitrarily except that Q(terminal) = 0
Repeat (for each episode):
Initialize s; :
Choose g; from s, using policy derived from
Q(e.g,&— greedy)
Take action a,, observe ry, s;+1
O(st,ar) « Q(sr,an)+
alry+ymaxq,,, Q(s1,ar+1) — Q(s1,ar)]
St Se+1

Until s; is terminal
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3.2. Deep Q-Network

DON is a typical case of DRL that combines Q-Learning and neural networks [45]. In the face of the "dimen-
sion disaster" formed by the excessive state space and action space, the neural network is used to replace the Q table
to avoid the storage of unnecessary data. The basic principle is to: (1) use the memory of the neural network and the
processing of large quantities of data, (2) adopt the deep convolutional neural network (DCNN) to approximate the
value function, and (3) utilize the empirical playback mechanism to learn from the old or processed data. As a result,
the memory of DQN helps the Q value approach the target value.

For the exploration of trial-and-error behaviors we mentioned above, the solution is e-greedy exploration. Each
time the agent randomly selects an action with a certain probability €. Otherwise, the agent selects an action with the
largest Q value among the currently selectable actions.

The pseudo-code of DQN is listed in Algorithm 2. From the algorithm perspective, DQN's modifications to Q-
Learning are mainly reflected in the following three aspects.

(1) DQN uses a neural network to approximate the value function;

(2) DON wuses the learning process of experience replay training and RL;

(3) DON independently sets the target network to deal with the TD deviation in the time difference algorithm
separately.

The following is the convergence formula for weight w in the DQN algorithm;

V(s,w) = v, (s) or g(s,a,w) = g, (s,a) )

where w is the weight, and the neural network or regression algorithm extracts the characteristic value of the input
state, uses the TD to calculate the output, and then uses the function to train and converge to w. DQN uses the target
network Q to calculate y, and updates O with the parameters of Q at every certain step, so that y is not affected by
the latest parameters, in exchange for higher stability.

Algorithm 2 Deep Q-Learning with experience replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 6
Initialize target action-value function O with weight 6~ = 0
for episode 1..p7 do
Initialize sequence S | = {x1} and preprocessed sequence ¢; = ¢(s1)
fort=1..7 do
With probability € select a random action a;;
otherwise select a; = argmax, Q(¢(s;),a;6)
Execute action a, in the emulator and observe the
reward r; and image x|
Set sp41 = 8¢, 1, Xp41, Pre1 = P(S41)
Store experience (¢;,dy, 1, ds41) in D
Sample random minibatch of experiences:
(Brsas,1t, r1) from D
Set y; according to Eq. (3)
Perform a gradient descent step on Eq. (4)
for the weights 6
Every C steps reset 0 = Q
end for

end for

T . if episode terminates at step 9
Vi { ri+ymaxy Q(dj1,a’;607), otherwise Q)
(i — Q(¢.a:0))’ (10)

However, when training a neural network, there is an assumption that all training data are independent and
identically distributed, but in general there is a certain correlation between the data collected by RL. Using these data
for sequential training, the neural network will be unstable. Experience replay can break the correlation between these
data and ensure neural network training remains stable. Algorithm 3 lists the pseudo code of experience replay.
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Algorithm 3 Experience replay

Input: Disassembly environment and initial state Steps:

(1) Make a transition: (s¢,ar, v, St+1)

(2) Store recent n transitions in a replay buffer.

(3) Remove old transitions so that the buffer has at most n transitions.

(4) Set buffer capacity n, a tuning hyper-parameter and application-specific.

‘n is typically large. e.g. 10° - 10°.

DOQN is an off-policy algorithm (different policy algorithm). That is, the strategy value functions that update
strategy of the generated sample < s,,a,,r;,s,.; > are not the same. The strategy is the e-greedy strategy, and the
strategy for updating the value function is the original strategy. So you can learn from the past, current, and other
agents' samples. The experience pool contains samples of the past, or past experiences and memories, which is, on
one hand, consistent with the fact that human beings learn knowledge relying on memories. On the other hand, the
random addition of experience mentioned in (4) will make neural networks more efficient [51,52]. Moreover, the
number of data extracted each time is suitable for the forward and backward propagation of the neural network.

4. RL in Disassembly Lines

In this section, we discuss the application of RL to the field of disassembly lines and meanwhile review exist-
ing results. Table 3 provides a quick reference.

Table3 RL applications on disassembly

Basic element definition

Algorithm Application Refs.
Environmental State Action Reward
Idle time
DLPB Precedence graph Disassembly task Available disassembly task Number of workstations  [37]
High demand parts
DLPB Matrix Disassembly operation Operation transfer Time consumption [57]
Q-Learning SDSP Matrix Disassembly state State transfer Component value [59]
SDP Matrix Disassembly state Disassembly operation Component value [30]
ODP AND/OR graph  Disassembly state Disassembly operation Component value [59]
Robot Gazebo Tool position Tool position movement Action function [60]
Dual . AJSSP Sheduling rules ~ Feature combination Select time Processing time [61]
Q-Learning Select level Di ol
. . . . isassembly time
. 3
SDSP Matrix Disassembly parts Available dlsa.ssembly parts Disassembly profit [53]
DQN HRC Buffer set Human state Human op eration Time consumption [54]
Robot state Robot operation
DLBP Buffer set Workstation state Number of workstations Time consumption [36]

Human state Individual task selection
DDPG HRC State combination Robot state . . Global assembly progress [28]
. Collaborative task selection
Execution state

Task selection

A2C DLBP Matrix Feature combination . . Time consumption [62]
Sub bl g\l%rkstatl(t)){l sel?cthn
ubassembly ubassembly selection L
PPO DLBP AND/OR graph Workstation Workstation selection Comprehensive indicators [63]
Overations Resource cost
RL DSM Multiple graphs  Decision information P . Punishes time [31]
Workstations . .
Failure punishment
DRL HRC RGB image RGB image Image change Comprehensive indicators [64]
Model- . . .. . .
Based RL CMfg Decision model ~ Current decision condition Decision Schedule quality [56]

4.1. Basic Elements of RL

4.1.1. Environment

RL is a trial and error learning in the environment, and the experience gained is also based on the environment.
In the current application field, there are many ways to map disassembly lines to the environment. For example,
precedence graphs in DLBP are used as the basis of the environment in [37]. The authors of [30] and [53] adopted Q-
Learning and DQN, respectively, to learn the disassembly sequences, but both used a matrix as the basic environ-
ment to facilitate the definition of the precedence relationship. Liu et al. [54] set up a man-machine combination
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environment through OpenAl, adopted the dual agent mode, took the operation of the machine as the basis, and took
the agent as the simulation of workers' activities, thus obtaining a virtual environment of man-machine combination.

4.1.2. State

For different application problems, the definition of states is different. According to the characteristics of the
disassembly line field, most of the current research defines the disassembly tasks that can be divided separately in the
environment as states, but their parameters are different according to the research problems. For example, in [37],
each state contained attributes such as workstation and idle time, and one state is determined by the combination of
multiple attributes. The work presented in [30] the disassembled parts as the state, which includes the component
information, disassembly time, and other attributes, meanwhile providing the agent with effective information about
the disassembled parts accurately and strengthening the agent's ability to disassemble EOL products.

4.1.3. Action

The ability of action selection and planning is also an important indicator of the evaluation algorithm in RL. The
action is the embodiment of the transition between states, and the agent transfers from one state to the next through
the action. For example, in [30], the disassembly operation was taken as an action which was subsequently adjusted
after each new state reached. Later on, the action set faced by each state was minimized to improve the exploration
efficiency and calculation speed. The authors of [55] regarded the disassembly operation as a state and the transition
between operations as an action, so that the matrix of the disassembly environment became an #n X n matrix that
helped better utilize its properties. In [53], the action was chosen as the set of the disassembled parts that can be
obtained when each disassembly state reached, and such disassembled parts were expressed by the relational matrix
to effectively improve the universality and make the neural network more convenient to process relevant data.

4.1.4. Reward

In a learning process, the agent gets different rewards when choosing different removable parts. The reward is
the basis of RL using to feedback on the action of the agent, and is also regarded as the benchmark to measure the
probability of reaching any state.

The reward in RL is generally set according to the target value. In [56], according to the characteristics of min-
imizing the time, a two-objective optimization model was established to minimize the total maximum completion
time and logistics distance, and the reward was set as a two-dimensional vector. Tuncel [37] took the reciprocal after
normalizing the multi-objective to ensure that Q-Learning obtained the maximum value of Q value. In [54], in the
case of dynamic environment, the time of human-machine coordination was used as a reward. Zhao et al. [53] based
on the characteristics of selective disassembly, the two indicators of disassembly time and disassembly profit were
taken as rewards for the agent, and the hierarchical mechanism set by its algorithm was effectively used to further
expand the problems faced by selective disassembly.

4.2. Relevant Application and Research

After years of research, many papers have been published on RL in the field of disassembly and remanufactur-
ing, especially after 2020. These applications involve not only the basic problems mentioned above but also cross-
cutting fields, including disassembly planning, cloud manufacturing, product scheduling, operation control, etc. Next,
we will discuss the latest progress in related fields in recent years.

For example, in one of the latest publications , based on DRL, a Markov decision-making process was used to
further deepen the problem of disassembly sequences. Combined with virtual reality technology, the sequence can be
created in a dynamic environment according to the basic input in the virtual reality training system. In [65], consider-
ing the modern manufacturing environment, RL was used in combination with industrial insertion tasks with visual
inputs to solve the inaccuracy problem of the controller caused by the difficulty of establishing the relevant physical
effect model in the first-order modeling. In the research of [64] about sustainable manufacturing, DRL was taken as
one of the key objects for in-depth research, and a specific system in human-robot cooperative disassembly (HRCD)
was realized, which proved the feasibility and effectiveness of RL.

In the application of disassembly sequencing, RL has been more widely used in recent years. Because disas-
sembly sequencing itself can be regarded as a decision-making process, RL has more application variants, which
ranges from the RL model (for the evaluation of future actions based on the value of components mentioned earlier
[66]) to the selective disassembly model (derived from the characteristics of disassembled products proposed in [30])
and the multi-objective high-dimensional model (solved by the DQN algorithm with neural networks in [53]). In
terms of implementation, an assembly sequence planning system for workpieces (ASPW) was proposed in [67],
where DRL was adopted in case of sparsity rewards and lack of training environments. The presented algorithm
ASPW-DQN combined the physical simulation engine Gazebo to provide the required training environment, and
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established a training platform to facilitate automatic sequence planning of complex assembly products.

At the same time, some researchers have combined RL with traditional heuristic algorithms to handle more
complex problems and improve the operation efficiency [51,52]. For example, RL and the genetic algorithm (GA)
were used together in [68] for effective maintenance optimization with intermediate buffer inventory. When multi-
agent RL is faced with a complex reward function, the excellent global optimization ability of GA was used to guide
the decision-making of each agent, and a bilateral interaction was established between the multi-agent RL and GA,
which improved the solution quality and speed.

The multi-constraint disassembly problem is also an issue caused by the increase of number of products to be
disassembled. The traditional optimization algorithm based on a single product cannot handle the dynamic environ-
ment with mixed conditions. For example, in [59], the cooperation with industrial robots, training logic, and environ-
ment interaction was considered where a case study of human-robot cooperative assembly task was carried out. The
integrated optimization and scheduling problem of multi-state single machine production in industrial applications
was studied in [69] by considering the integrated optimization problem (as a Markov decision process) and various
factors (such as processing and maintenance costs), where a new heuristic learning method was proposed to deal with
the integrated model, thereby improving the learning efficiency of RL. In [70], combined with the Internet of things
(IoT), a DRL-based intelligent transfer framework for partial detection was proposed, in which vehicles were
observed (that equipped with IoT communication technologies and within the sensing range) and excellent results
were obtained under extensive simulations of different topologies, traffic flows and detection intervals.

Some recently published results [57, 58] used Q-Learning as a basic algorithm for the reason that Q-Learning is
much faster than improved DQN that is integrated with neural networks [58]. A value matrix was used to optimize
SDSP by means of converting the original optimization problem into a directed graph path problem according to the
mathematical model, and this expanded the model of the problem [57]. To deal with DLPB, stage goals were set so
that Q-Learning can meet the requirements of multiple indicators under certain conditions.

Some reported research works, such as [53], treated the decision problem of SDSP as MDP and proposed DQN-
SDSP for EOL products with uncertain structure. DQN-SDSP can adaptively obtain a selective disassembly
sequence, and take into account the impact of tools on the disassembly steps for use when the structure of EOL prod-
ucts changes. The DQN algorithm was expanded to avoid the dimension disaster through the neural network, and the
memory brought by neural networks was used to accelerate the speed of obtaining the optimal sequence under large-
scale data. Furthermore, comparative experiments were conducted with other algorithms in the case.

To summarize, the advantages of applying RL to the field of disassembly are obvious: (1) RL provides an
adaptable scheme capable of learning things that are not easy to model; (2) RL is an adaptive algorithm from low-
dimensional data to high-dimensional data, especially considering the fact that DRL can handle large-scale high-
dimensional data in complex systems [71]; (3) RL can be combined with other approaches to solve a variety of
problems, such as image processing and decision-making problems; and (4) RL has a high expansion ability —
from Q-Learning to DQN, RL can be expanded into a variety of algorithms [72]. However, RL cannot be used
at will in the field of disassembly lines. At present, there are at least the following difficulties. First, the environment
is different, and there is no unified basic environment, which leads to a large difference in the same problem. Sec-
ondly, the division of basic elements such as states and actions sometimes leads to certain information loss. In the
disassembly line system, the variables and constraints are complex, and the selection of the algorithm is a serious
problem. Moreover, at present, there is no unified comparison index like deep learning in RL, which makes it diffi-
cult to compare various studies.

To solve these problems, we need to pay attention to the following points. First, when determining the RL algo-
rithm, we need to design the environment and actions in advance, and select different kinds of RL according to the
characteristics of the problem. Then, when studying action space and state space, we need to design the data structure
of reward in combination with the research objectives to avoid RL falling into local optimal solutions. Next, we
should be careful at transforming special problems into general RL models such as a Markov decision process, and
abstracting specific practical problems into mathematical problems [73]. Last but not the least, specific attention is
required when introducing cross fields to optimize the algorithm and model based on the basic principles.

5. Challenges and Future Directions

5.1. Disassembly Line Problems

Most of the existing research results on RL for DLBP take the attribute information of the disassembled prod-
uct as the state, the changes of the parts in the disassembly as the action, and the self-determined objective function as
the reward. However, the following challenges are encountered at present. (1) Once the multi-objective problem is
involved, it is necessary to improve the data dimension or preprocess the data such as reward. (2) The data of train-
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ing environment is relatively small at present, and many cases need to be transformed before they can be used as RL.
Therefore, we should first deal with the multi-objective problem, customize a special solution method for the multi-
objective Pareto solution set, and use multi-agent or hierarchical design. Secondly, we should study how to investi-
gate a general basic environment. Take the basic environment as the cornerstone, introduce the development direc-
tion of each research problem, and finally overcome a large number of inefficient reconstruction caused by the envi-
ronment.

5.2. Practical Application

Just like the data and environmental challenges mentioned above, there are few professional reference data sets
in the field of disassembly lines at present, and the training of RL agent requires a large amount of data to obtain sat-
isfactory results. In fact, most of the current research simulates the specific conditions of the real environment in the
virtual environment, and rarely involves the system with sensors or real disassembly operations, which fails to extend
the application of RL in the disassembly line to a broad scope of commercial cases. On the other hand, the disman-
tlement line has high requirements for the overall efficiency, recovery cost, dismantlement profit and other indicators,
resulting in the situation that RL can only be in the exploration and research stage for a long time in the absence of
cases. Therefore, in order to promote the application of RL in the field of disassembly lines, some key challenges
need to be overcome. First, we should continue to improve the algorithm theory of RL to improve the robustness and
global convergence ability. Secondly, the mathematical model should be established for the disassembly problem, the
application scenario should be expanded, and the interface should be set between multiple problems to ensure the
overall coordination. In addition, both support and collaborative research on policy issues such as carbon emissions
and remanufacturing are needed.

5.3. Future Development

Even with some challenges, the current RL is still an important part of the Al technology, which has been suc-
cessful used in many scenarios and application areas, and is attracting more and more attention. Although there are
still some obstacles in both theory and technique, there is no doubt about its future development. As for the future
development directions of RL, at least the following aspects should be considered. First, for abstraction ability, RL
should follow certain standards when defining basic elements, so as to generalize the model. Second, the neural net-
work structure of DRL needs to be combined with the improvement research of DL and other approaches to boost
learning ability, e.g. training speed and accuracy [74]. Finally, it is the practical application that strengthens the con-
nection between the virtual environment and real world, and opens the interface between research and industrial tech-
nology [75]. Therefore, more effort should be spent on RL applications.

6. Conclusion

A comprehensive review of various studies in the application of reinforcement learning (RL) in disassembly
lines is presented in this paper, with the intention to help related researchers to understand what has been done, what
still needs to investigate and where the challenges are. The disassembly line balancing problem (DLBP) and its sub
branches are discussed with their characteristics also involved. Secondly, the basic classification of RL is discussed,
and the most popular and widely used RL algorithms are reviewed in detail. Then, the applications of RL in disas-
sembly sequencing including SDP, DLBP and other issues are discussed and analyzed. Specifically, the correspond-
ing environment definitions, reward settings and basic mechanisms are studied. Finally, we point out the difficulties
and future research directions of RL in the field of disassembly lines, so as to promote the further development of the
related research.
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