International Journal of Network Dynamics and Intelligence =cilight

Survey/review study

A Survey of Algorithms, Applications and Trends for Par-
ticle Swarm Optimization

Jingzhong Fang ! Weibo Liu *, Linwei Chen , Stanislao Lauria ', Alina Miron ', and Xiaohui Liu

! Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
% The School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
* Correspondence: Weibo.Liu2@brunel.ac.uk

Received: 18 October 2022
Accepted: 28 November 2022
Published: 27 March 2023

Abstract: Particle swarm optimization (PSO) is a popular heuristic method, which is capable of effec-
tively dealing with various optimization problems. A detailed overview of the original PSO and some
PSO variant algorithms is presented in this paper. An up-to-date review is provided on the development
of PSO variants, which include four types i.e., the adjustment of control parameters, the newly-designed
updating strategies, the topological structures, and the hybridization with other optimization algorithms.
A general overview of some selected applications (e.g., robotics, energy systems, power systems, and
data analytics) of the PSO algorithms is also given. In this paper, some possible future research topics of
the PSO algorithms are also introduced.

Keywords: particle swarm optimization; optimization; evolutionary computation; inertia weight; acceler-
ation coefficient

1. Introduction

Optimization plays a critical role in a variety of research fields such as mathematics, economics, engineering,
and computer science. Recognizing as a popular class of optimization techniques, the evolutionary computation (EC)
methods have behaved competitive performance in effectively tackling optimization problems in an easy way. So far,
the EC methods have been widely applied in numerous research fields thanks to their strong abilities in finding the
optimal solutions [1]. Among the EC algorithms, some algorithms which are based on biological behaviours (e.g., the
genetic algorithm (GA) [2], the ant colony optimization (ACO) algorithm [3] and the particle swarm optimization
(PSO) algorithm [4,5]) have been well-adopted in a number of research areas e.g., energy systems, robotics,
aerospace engineering and artificial intelligence.

As a population-based EC method, PSO is developed on the basis of the mimics of social behaviours e.g., the
birds-flocking phenomenon and the fish-schooling phenomenon. Notably, the potential optimization solution is repre-
sented by a particle (also called as individual). During the searching process, each individual learns from the “move-
ment experience” of itself and others. It should be mentioned that the advantages of PSO can be summarised into
three aspects: (1) the number of parameters required to be adjusted is relatively few; (2) the convergence rate of the
PSO algorithm is relatively fast; and (3) the implementation of the PSO algorithm is simple [6,7]. Owing to its tech-
nical merits and easy implementation, PSO has become a widely-used technique for tackling optimization problems
in recent years [8—10].

Unfortunately, many population-based EC algorithms face the challenging problem that the potential solutions
being easily trapped into the local optima especially under complex and high-dimensional scenarios. As a well-known
EC algorithm, PSO is not an exception. As a result, developing new PSO methods has become a seemingly reason-
able way to deal with the premature convergence puzzle [11—-16]. For example, a group of PSO variants have been
put forward by modifying the parameters [13—15]. In [14, 15], a linear decreasing mechanism has been proposed to
alter the inertia weight, leading to a proper balance between the global discovery and the local detection. In [13], a
novel optimizer has been introduced by presenting a time-varying strategy to adjust the acceleration coefficients,
which enhances the global search and convergence performance.

Apart from modifying the control parameters, designing novel updating strategies has become a hot research
direction in developing advanced PSO algorithms [17-21]. In particular, a powerful family of improved optimizers

https://www.sciltp.com/journals/ijndi

mailto:Weibo.Liu2@brunel.ac.uk

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

has been proposed by embedding the switching strategy into the velocity model, thereby improving the optimal solu-
tion discovery of PSO [18,21-23]. In [21], an evolutionary factor has been designed for updating control parameters,
which divides the evolution process into four different states. In [18], a switching scheme has been embedded into
PSO depending on the Markov chain (which is used to determine the evolutionary states) with the aim of improving
the convergence of the optimizer.

The neighbourhood information of each individual is of practical significance in finding the optimal solution.
Recently, various topological structures have been designed to comprehensively utilize the neighbourhood informa-
tion of each individual so as to carry out a thorough exploration in the problem space [16,24]. In [16], a variable
neighbourhood operator has been introduced for improving the optimizer’s search ability. A dynamically adjusted
neighbourhood has been designed in [24] to enhance the information sharing in the swarm.

Hybridizing PSO with other EC algorithms is also a well-known technique in designing new PSO methods [12, 25].
For instance, in [26], the PSO algorithm has been hybridized with differential evolution to: (1) enhance the current
local best particles’ search strategy; and (2) enhance the possibility of individuals slipping away from the local
optima. A mutation operator has been embedded into the PSO algorithm [25], which improves the convergence rate
and expands the search space.

Owing to their relatively fast convergence rate and satisfactory solution quality, the PSO algorithms have been
successfully applied to robot path planning, machine allocation, transportation, electricity trading, etc [27-30]. In
[27], PSO has been adopted to handle the mobile robot path planning problem. A PSO-based detection approach has
been put forward in [8] for finding the maximum power point in the energy power system. An improved PSO
method has been developed in [30] with the purpose of handling the economic dispatch challenge in the power sys-
tem by incorporating the constriction factor. A PSO-based trajectory planning approach has been introduced in [29] to
find the optimal trajectory of the spacecraft. PSO has also been adopted to tackle the centroid location optimization in
K-means clustering [31].

This paper aims to deliver a comprehensive and timely review of the PSO algorithms and their applications. An
up-to-date review of some PSO variants is also introduced. In this paper, PSO applications in several areas are dis-
cussed. In Section 2, details of original PSO as well as basic PSO are presented. In Section 3, some existing ‘“‘variant
PSO algorithms” including the latest development of PSO algorithms are summarized. In Section 4, some popular
practical applications of PSO algorithms are pointed out. Some possible future research topics are listed in Section 5.
The conclusion is given in Section 6.

2. The PSO Algorithms

2.1. The Original PSO Algorithm

Original PSO is a prominent EC algorithm, which aims to discover the global optimum in the problem space by
tuning the velocity and position of the particles [4,5]. Basically, each element of the swarm is an individual particle
serving as a candidate solution. The movement of each particle is guided by (1) its previous “flying experience”
which is the personal best location (i.e., pbest); and (2) the “group flying experience” which is the global best loca-
tion (i.e., gbest) detected by the entire swarm.

All the individuals search the problem space which has dimensions to seek the optimal solution. The velocity
and position of the i th particle at the kth iteration are denoted by v;; and x;, respectively. At the beginning, v;, and
X, are randomly initialized. During the evolution process, the velocity and position updating equations of the i th
particle are given as follows:

Viket =Vig + 11 (Piig — Xix) + c2r2 (PG — Xix) (1)
Xig+1 = Xik + Vig+1

where k denotes the iteration number; ¢ is an acceleration factor named the cognitive parameter; ¢, is the social
acceleration parameter; r; and r, are two separate random numbers selected within [0, 1]; pi;; represents the personal
best location found by the ith particle itself, which is denoted by pi;; = [piil,k, pifk,--- ,pifk]; pgi represents the
global best location of all the particles, which is denoted by pgi = [pg;, pgi. -, pgP]. ¢1 and ¢, indicate the degree
of each particle affected by itself and other particles, respectively [32]. The acceleration coefficients play an impor-
tant role in balancing the local discovery and global search performance, and also have significant influence on the
population diversity, solution quality, and convergence behavior of the algorithm.

2.2. The Basic PSO Algorithm

Original PSO has shown strong abilities in solving optimization problems. Nevertheless, the particles may be
easily trapped in the local optimal solutions. To guarantee the search performance and balance the global detection
and local discovery, the inertia weight w has been introduced in [33] as an important factor to improve the PSO algo-

25

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

rithm, and such a factor indicates the ability of particles to inherit their previous velocities. The inertia weight embed-
ded PSO algorithm has been recognized as the basic PSO algorithm. The velocity as well as the position of the ith
particle at the (k + 1)th iteration are expressed as follows:

Viket =W+ 171 (Pl — Xix) + 22 (P&k — Xig) 2)
Xik+1 =Xik T Vik+

where w indicates the inertia weight. The basic PSO process is presented in Algorithm 1.

Algorithm 1 The Procedure of the Standard PSO Algorithm
T: Initialize the parameters of the PSO algorithm including the population size P, inertia weight w, acceleration coefficients ¢y, ¢,, and

maximum velocity V..

2: Set a swarm that has P particles

3: Initialize the position x;; and the velocity v;;, and pi;, of each particle (i = 1,2,...,P); and initialize pg, of the swarm
4: Calculate each particle’s fitness value

5: Update the pi; ; of each particle and pg; of the swarm

6: Update the velocity v; and the position x;) of each particle based on Equation (2)

7: Confirm whether the maximum iterations are met or the fitness value reaches the threshold, if not, go to step 4

3. Developments of the PSO Algorithm

Similar to most population-based EC algorithms, the PSO algorithm also faces the premature convergence
problem [34]. In this case, it is of practical importance to put forward new PSO algorithms especially for solving
large-scale optimization problems and multi-modal optimization problems. In this paper, the reviewed PSO variants
can be categorized into four groups: (1) adjusting the control parameters; (2) developing new updating strategies;
(3) designing various topological structures; and (4) combining with other EC algorithms. In this section, the afore-
mentioned four types of PSO variants are reviewed and summarized.

3.1. Adjusting Control Parameters

In the PSO algorithm, the control parameters refer to the inertia weight and the acceleration factors, which are
of practical significance in maintaining the balance between global discovery and local detection. In the past few
decades, plenty of work has been conducted to adjust these control parameters for improving PSO. Some selected
PSO variants with modified control parameters are reviewed and summarized in Figure 1.

Nonlinear Linear
decreasing decreasing 1700 arithmic
decreasing

Inertia weight| S)
igmoi

Moditying the

control
parameters

Acceleration

- - coefficients ﬁ
Timevarying - J
ine cosing

Nonlinearly <—J function
timevarying Gaussian
function o

Figure 1. PSO variants with modified control parameters.

I

3.1.1. Inertia Weight

As an important parameter, the inertia weight is designed to achieve a proper balance between global discovery
and local detection. A brief introduction is presented in Table 1 on the recently developed inertia-weight-based PSO
variants.

26

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

Table1 Inertia Weight Updating Strategies

Approach Abbreviated Name Reference
Li-DIW [14,15]
Linear Decreasing MIW-LD [36]
CLi-DIW [44]
Non-linear Decreasing NLFDIW [37]
.)) SDIW [38]
Sigmoid Function Based
SIIW [39]
Logarithmic Decreasing Lo-DIW [40]
Randomizing RIW [41]
SA Algorithm Based SAIW [42]
Fuzzy Theory FAPSO [45]
.. CDIW [43]
Logistic Map Based
CRIW [43]

It is known that a smaller inertia weight could lead to a better local search, while a larger inertia weight could
contribute to a better global discovery [15]. The particles with satisfactory search ability would thoroughly exploit the
solution space at the early step of search and avoid trapping into the local optima with high possibility. Additionally,
the inertia weight would greatly affect the search ability of the particles. In [14, 15], starting from a relatively large
value, the inertia weight is deployed to guarantee the global exploration performance. Then, the inertia weight is
adjusted following the linear-decreasing strategy during the searching process with hope to enhance the local explo-
ration. PSO with the linear decreasing inertia weight (Li-DIW) strategy has been proposed in [14, 15] where the iner-
tia weight (wy) is updated as follows:

Wi = Wiax = (Wmax = Wnin) X E (3)

where Wy, and wp;, denote the maximal and minimal inertia weight, respectively; k is the number of the current
iteration; and K denotes the number of the maximum iteration during the evolution process. In [35], Wi and wiyn
are set to be 0.9 and 0.4, respectively, which becomes a normal setting in later development of PSO. The Li-DIW
strategy has been widely used in developing various PSO algorithms.

It should be mentioned that a number of inertia weight updating strategies have been introduced based on the Li-
DIW strategy. For example, a multi-stage inertia weight linearly decreasing strategy (MIW-LD) has been developed
in [36] to better balance the global discovery and the local detection than the PSO with Li-DIW. The inertia weight
(wy) 1s updated by:

(Wi —w,)(ky — k) W

X s 0<k <k

1

Wi = Wy, k1<k<k2 (4)
Wn —wy)(K—k)
T Wy, k2 <k<K

where K is the maximum iteration number; k is current iteration number; w; and w/ indicate the initial as well as the
final value of the inertia weight, respectively; and w,, k; and k, are the multi-stage parameters, which are manually
selected based on experimental experience.

Different from the Li-DIW strategy, another inertia weight updating strategy is the nonlinear decreasing strat-
egy. A nonlinear function modulated inertia weight (NLFDIW) has been developed in [37], and the updating equa-
tion of wy is presented as follows:

(K _ k)n
Kn

wi = (W;—wp) X +wy ®)
where n represents the nonlinear modulation index. The proposed NLFDIW could improve the convergence speed
and tune the optimal solution detection strategy.

Another nonlinear function, the sigmoid function has been adopted in [38] to control the inertia weight, where a
sigmoid-based decreasing inertia weight (SDIW) strategy is put forward to improve the convergence speed. The
updating equation of the inertia weight (w;) is given as:

_ Wi Wy +w; 6)
1 +exp(—u(k—nxK))

Wi

27

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

where n and u are constant values to set partition of the function and to adjust the sharpness of the function, respec-
tively.
In [39], another sigmoid function modulated inertia weight has been introduced, which is called as the sigmoid-
based increasing inertia weight (SIIW). The updating equation of the inertia weight (wy) is shown below:
Wi — Wy
Wk= 1+exp(u(k—n><K))+wf Q)

where n and u are constants to set partition of the function and to alter the function sharpness, respectively. The SITW
exhibits faster convergence rate than standard PSO.

A logarithm decreasing inertia weight (Lo-DIW) strategy has been introduced in [40] to improve the conver-
gence rate. The updating equation of the inertia weight (w;) is shown below:

10k
Wi = Wmax + (Wmin - Wmax) X lg ((1 + 7) (8)

where a is a constant value for controlling the evolutionary speed.

The global search ability becomes weak when inertia weight decreases, and the particles may fall into the local
optima [6]. In the past few decades, improving the search ability of PSO has been a hot research topic by changing
the inertia weight in various aspects. It is found that the PSO algorithm with Li-DIW cannot obtain satisfactory results
when dealing with a nonlinear dynamic system. In this case, the random inertia weight (RIW) scheme has been pro-
posed in [41] for tracking and optimizing a dynamic system.

Some inertia weight updating strategies are designed by using other optimization algorithms. For example, in
[42], the SA integrated inertia weight (SAIW) has been introduced, where wy, is updated as follows:

Wi = Wnin + (Wmax - Wmin) X A1 (9)

where A is a factor used to modify the temperature parameter of the SA algorithm, which is set to be 0.95. Compar-
ing with the standard PSO, the SATW-based PSO shows faster convergence speed.

Using the logistic map, the chaotic-descending-based inertia weight (CDIW) strategy and the chaotic-embed-
ded random inertia weight (CRIW) strategy have been proposed in [43]. wy using the CDIW strategy is updated by:

wi = (w; —wp) X +wrXzZg (10)
where z; is the logistic map. The updating equation of inertia weight (w;) using the CRIW strategy is shown as fol-
lows:

wr =0.5XrXz (11)

where r is a random number selected from [0, 1]; and z; is the logistic map. Both CDIW and CRIW strategies
improve the convergence rate, the convergence accuracy and the global discovery ability of PSO. Comparing with the
RIW, the CRIW shows better convergence rate and solution accuracy.

In [44], the chaotic-embedded LD inertia weight (CLi-DIW) strategy has been proposed, which embeds the
chaotic sequences into the Li-DIW strategy. The updating equation of the inertia weight (w;) using the CLi-DIW
strategy is given by:

k
Wi = Vi X (Wmax - (Wmax - Wmin) X }) (12)

where wy,;, and wy.x represent the minimal and maximal value of the inertia weight, respectively; k and K represent
the current iteration number and the maximum iteration number, respectively; and y, is the chaotic parameter at the
kth iteration. The CLi-DIW improves the particles’ searching capability which could make it easier to slip away from
the local optima.

In recent years, the fuzzy theory has been successfully applied to the PSO algorithm [45]. A fuzzy system based
PSO algorithm (FAPSO) has been designed in [45], where the inputs of the fuzzy-based method are the normalized
current best performance evaluation (NCBPE) as well as the current inertia weight, and the output variable of the
fuzzy system is the change of the inertia weight. NCBPE is used to evaluate the best candidate solution discovered by
the PSO algorithm.

3.1.2. Acceleration Coefficients

In recent years, many PSO variants which focus on the modification of the acceleration coefficients have been
introduced. The reviewed acceleration coefficient updating strategies are summarized in Table 2.

28

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

Table2 Some Acceleration Coefficient Updating Strategies

Approach Abbreviated Name Reference
Constant Constant AC [46, 47]
TVAC-1 [13]
Time-varying TVAC-2 [49]
ATVAC [50]
. . . NDAC [51]
Non-linear Time-varying
NTVAC [52]
SBAC [53]
Sigmoid Function Based
AWAC [54]
Sine Cosine Function Based SCAC [55]
Adding Gaussian White Noises GWNAC [56]
Self-coordinating SAC [57]

The effect of two acceleration coefficients on each particle’s movement is illustrated in Figure 2. According to
[5], a relatively larger cognitive component could make particles search in a wider space comparing with the social
component. In the original PSO algorithm, the acceleration components are constant values which are set to be 2.

Figure 2. The effect of the value of the acceleration coefficients on the movement of the particle.

A number of new PSO methods have been put forward where different acceleration factor updating strategies
have been adopted for specific optimization problems. In [46], the acceleration coefficients are set to be 2.05 to guar-
antee the convergence of the optimizer. In [47], ¢; and ¢, are set to be 0.5 and 2.5, respectively.

It is worth noting that a relatively larger social component may easily lead to the premature convergence prob-
lem. The time-varying acceleration coefficient-embedded scheme (TVAC-1) has been proposed in [13], where the
updating equations of the acceleration factors (¢, and ¢,) are expressed as follows:

k
crx=cut(cip—ci)X X
) (13)
Cox = Coi +(Cop — C27) X X
where ¢y; and ¢, indicate the initial and final values of the cognitive component, respectively; c¢»; and ¢, are the ini-
tial and final values of the social component, respectively; k is the current iteration number; and K is the maximum
iteration number. The time-varying scheme for altering acceleration factors could not only improve the global dis-
covery at the early step of the searching process, but also the convergence of particles towards the globally optimal
solution at the latter step of the evolution process. According to the experimental results reported in [13], the parame-
ters are set to be ¢1; = 2.5, ¢15 = 0.5, ¢5; = 0.5, and ¢,y = 2.5. Based on the TVAC-1, a new updating strategy has
been introduced to adjust the time-varying acceleration coefficients with unsymmetrical transfer range (UTRAC) in
[48]. The UTRAC improves the convergence speed of the PSO algorithm.
In [49], another time-varying acceleration coefficients (TVAC-2) updating strategy has been proposed, which
could further improve the solution accuracy. The updating equations of the acceleration coefficients (c; 41 and ¢;4+1)
using the TVAC-2 strategy are given by:

0.5
Cli+1 = Clk— —
’ ’ K
14
+0.5 a4
Copel = —
2,k+1 = C2k 1%

where k and K represent the current and the maximum iteration number, respectively.

29

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

The asymmetric time-varying-based strategy for controlling acceleration coefficients (ATVAC) has been pro-
posed in [50], where the ATVAC demonstrates merits in balancing global and local search and improving the con-
vergence as well as the robustness. In ATVAC, the updating formulas of ¢ ; and ¢, are expressed by:

i =ci—(ci—cip) X —
K (15)

Cox = Coi +(Cop — C2i) X X
The nonlinear dynamic mechanism has been introduced in [51] to alter the acceleration factors. The updating
equations of the nonlinear dynamic acceleration coefficients (NDAC) are expressed as follows:

2
Clk = —(le—Cli)X(}) +Cif
(16)

K\ k
Cox = Coi X (1 - E) +C2f X }
where ¢y; and ¢; are the initial and final cognitive factors, respectively; c,; and ¢, are the initial and final social
acceleration factors, respectively; & is the current iteration number; and K is the maximum iteration number.
In [52], a set of non-linear time-varying acceleration coefficients (NTVAC) have been put forward to alleviate
premature convergence. ¢, and ¢, of the PSO algorithm with NTVAC are updated by:

Clk

O.5+0.5Xexp(—%)+ 1.4><sin%

(17)

Cok

k k
1+ 1.4><(1 —exp(—%))+ 1.4><sinE

where k denotes the current iteration number.

As a popular nonlinear function, the sigmoid function has been used to adjust acceleration coefficients. In [53],
sigmoid-function-based acceleration coefficients (SBAC) updating strategy has been proposed. The acceleration
coefficients (c; 4 and ¢,) of the PSO algorithm with SBAC are updated by:

K 2
+2(C1f_cli)(E_ 1)

— 1
N T
1+exp(

1
1 -
rerp 22|

where A is a control parameter which is set to be 0.0001.

In [54], a sigmoid-function-based adaptive weighted acceleration coefficients (AWAC) strategy has been devel-
oped, where an adaptive weighting updating function has been proposed by exploiting the distance from the particle
to its pbest and gbest in order to adjust the acceleration coefficients. The updating equations of ¢;; and ¢, in the
PSO algorithm with AWAC are expressed as follows:

k)z (18)

+(le—C|i)(§

b
- +d
YT T vexp(—ally, — o) (19)
b
Cok = d

1+exp(—a(ly—c)) *

where [, denotes the distance from an individual to its pbest at the k th iteration; /,; denotes the distance between
the individual and the gbest at the kth iteration; ¢ and d are two parameters which are set to be 0 and 1.5, respec-
tively; and a and b are two parameters used to describe the curve, which are set to be 0.000035 x m and 0.5, respec-
tively. Note that m is the range of search space of the problem.

The sine cosine acceleration coefficients (SCAC) updating strategy has been proposed in [55]. The updating
equations of ¢ ; and ¢, in the PSO algorithm with SCAC are given by:

clk:yxsin((l—f)xz)+a

’ K| 2

czkz,uxcos((l—k)xz)+a
’ K| 2

30

(20)

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

where k and K denote the current iteration number and the maximum iteration number, respectively; and y and @ are
two constants, which are set to be 2 and 0.5, respectively. SCAC could not only motivate a thorough local detection
but also force the candidates moving to the global optimal solution.

Gaussian white noise-embedded acceleration coefficients (GWNAC) have been introduced in [56], where ¢4
and ¢, are updated by:

K-
Crx = cri+(ciy—c) X a +61

@n

Cox = Coi +(Cof — C2i) X +06,
where 6, and 6, are two independent GWNs. By randomly perturbing the acceleration factors, the population diver-
sity is maintained and the possibility of slipping away from the local optima is greatly enhanced.

In [57], a novel adaptive method has been proposed, where the acceleration factors are modified adaptively to
make the target particle self-coordinates. The acceleration factors of the ith particle (¢y 41 and c,;x+1) are updated
by:

Crixs1 = Crigtai(cbestig—cri), i=1,2,---,N
(22)
Coike1 = Coqxtai(chbestyy—caip), i=1,2,-+-,N
where N is the swarm size; «, represents the step size which is used to change the diversity of each particle; and
cbest, , and cbest,, are the parameters which update the global best at certain iterations.

3.2. Developing Updating Strategies

Apart from adjusting control parameters of the PSO algorithm, many researchers have focused on designing
new updating strategies of the PSO algorithm in the past few decades. The reviewed approaches on developing new
algorithm updating strategies are summarized in Table 3.

Table3 Developing New Algorithm Updating Strategies

Approach Abbreviated Name Reference
VBRPSO [59]
Re-initialization RPSO [17]
RRPSO [60]
ERPSO [60]
ARPSO [61]
APSO [21]
SPSO [18]
ISPSO [62]
SDPSO [23]
Switching Strategy MDPSO [63]
ARFPSO [64]
DNSPSO [24]
RODDPSO [22]
FVSPSO [66]
SASPSO [58]
Clustering Algorithm CAPSO [69]
Constriction Factor CFPSO [46, 70]
Comprehensive Learning CLPSO [34]
Multi-elitist Strategy MEPSO [73]
Fractional Velocity FVPSO [65]
FPGA Based PMPSO [27]
Detection Function Based IDPSO [74]
Quantum QPSO [75]
Cooperative CPSO [72]

3.2.1. Re-initialization

Re-initialization is a strategy which could help alleviate premature convergence [58]. In [59], a velocity-based re-
initialization PSO (VBRPSO) algorithm has been presented to alleviate the premature convergence problem. In the
VBRPSO algorithm, the particle velocity is monitored during the evolution process. If the median value of the norms
of the velocity of the entire swarm is lower than a threshold, the swarm is treated to be stagnant and the algorithm
will restart. More specifically, the stagnation can be determined by: (1) computing the Euclidean norm of the particle’

31

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

s velocity one by one; (2) sorting the obtained norms; and (3) comparing the median of the obtained norms with the
pre-set threshold. If the median value of the norms is lower than the threshold, the swarm is stagnant.

In [17], an improved PSO algorithm with re-initialization mechanisms (RPSO) has been introduced, where the
re-initialization process is determined based on the estimation of the varieties and activities of the particles. A new
factor named “steplength” is employed to determine whether the particle should be re-initialized or not. The
“steplength” for the ith particle at the kth iteration (denoted by p; 1) is given by:

N 2
Pik+1 = o (Xigr1.4 = Xiga) (23)

where N denotes the dimension of the problem space. If the ith particle’s “steplength” is below the threshold, the ith
particle will be put into an “inactive particles” group. When P > uXx N (where P denotes the size of the “inactive
particles” group, and u is a design parameter), we need to re-initialize the particles in the “inactive particles” group.
Based on a probability p,, a number of particles are re-initialized with new velocities, positions and parameters, while
other particles are re-initialized only with new parameters with hope to improve the convergence behavior and guar-
antee the solution accuracy.

In [60], two re-initialization methods have been proposed (which are the random re-initialization strategy and
the elitist re-initialization strategy) to promote the PSO diversity. The first method is random re-initialization
(RRPSO) where patrticles are reserved randomly, which could improve the ability of exploration. The second method
is elitist re-initialization (ERPSO) where the worse preferred particles in the searching area are re-initialized, which
could make the particle obtain a better fitness value than standard PSO.

3.2.2. Switching Strategy

So far, a new class of switching strategies have been designed for improving the PSO algorithm, where the evo-
lution process is divided into several evolutionary states. In [61], an attractive and repulsive PSO (ARPSO) algorithm
has been introduced, which is a diversity-guided optimizer that could alleviate the premature convergence. The
velocity of the ith particle at the (k + 1)th iteration of the ARPSO algorithm is given as below:

Viks1 = Wik +a(r (Piix — Xix) + 12 (P8 — Xix)) (24)

where w indicates the inertia weight; r; and r, are two separate numbers randomly generated within [0,2]; pi;, rep-
resents the personal best location discovered by the ith particle itself; pg, represents the global best location among
all candidates; and a is a parameter used to determine the evolution phase. The optimizer is at the repulsion phase
(which demonstrates better divergence than the other evolution phase) when a is set to be a = —1. The optimizer at
the attraction phase would encourage the swarm to converge when a is set to be @ = 1.

In [21], an adaptive PSO (APSO) algorithm has been proposed, where an evolutionary factor (EF) is intro-
duced to determine the exploration, exploitation, convergence, and jumping out states. The evolutionary state estima-
tion technique and the elitist learning strategy have been proposed in the APSO. According to the ESE, the evolution
process can be divided into four states based on the evolutionary factor. The EF at the kth iteration (denoted by E)
is calculated by:

dg,k - dmin

Ep=—2—"
5 dmax - dmin

€[0,1] (25)

where d, is the mean distance value of the global best particle at the kth iteration to all the other particles; and dyi,
and dy,, are the minimum and the maximum value of d;, which is the mean distance value of the particle i to all the
other particles. Note that d;; is measured by using the following equation:

1 l D 2
di,k = m jﬂZj# Z (X,',k,[- Xj,k,[) (26)

I=1
where N denotes the swarm size; and D is the number of dimensions. The inertia weight (w,) is adjusted using a sig-
moid mapping based on the EF, which is shown as follows:
_ 1

1+ 1.5xexp(~2.6E ;)

Wi €[0.4,09], VE; €[0,1] @7)

where wy, is initialized to be 0.9, and the acceleration coefficients are initialized as 2 and adjusted according to the
evolutionary state. The main steps of the APSO algorithm are presented in Algorithm 2. Compared with the standard
PSO algorithm, the APSO algorithm demonstrates better performance in terms of the convergence speed, global opti-
mization ability and solution accuracy.

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

Algorithm 2 The Procedure of the Adaptive PSO Algorithm

1: Initialize the parameters, e.g., the population size P, inertia weight w = 0.9, acceleration factors ¢; = ¢, = 2, and maximum velocity Viax

: Set a swarm that has p particles

: Initialize the position x;; and the velocity v; 1, and pi; of each particle (i = 1,2,..., P); and initialize pg; of the swarm

: Estimate the evolutionary states and adjust the control parameters

: Calculate the fitness of the ith particle

2
3
4
5: Update the velocity v;x and the position x; x of each particle
6
7: Update the pi; x of each particle and pgy of the swarm

8

: Confirm whether the maximum iterations are met or the fitness value reaches the threshold, if not, go to step 4

In [18], a switching-motivated PSO algorithm (SPSO) has been developed. Based on the evolutionary factor,
the velocity updating process could jump from one state to another by using a Markov chain, and the acceleration
factors are thus updated based on the evolutionary state. Furthermore, a leader competitive penalized multi-learning
approach is introduced in order to help the globally best particle slip away from the local optimal areas and acceler-
ate the convergence speed. The velocity updating equation of the ith particle at the (k + 1)th iteration of the SPSO
algorithm is expressed as follows:

Vikel = WVix +CreT (Pl — xi) + Cog 2 (pge—xix) (28)

where w indicates the inertia weight; ¢, and ¢, are acceleration coefficients; r; and r, are two separate random
numbers generated within [0, 1]; pi;, represents the personal best position found by the ith particle itself; pg; repre-
sents the global best position of the entire swarm; and &, is a non-homogeneous Markov chain which is used to
determine the parameters. Different from the APSO, the mean distance value of the ith particle to all the other parti-
cles (denoted by d;) is calculated as follows:

D
Z (xi,k,l - X j,k,l)z (29)

I=

where N is the swarm size; and D is the number of dimensions. The EF can be calculated based on Equation (25).
After calculating the EF, the evolutionary state can be confirmed based on the Markov chain. The parameters of the
SPSO are mode-dependent. The inertia weight (w;) of the SPSO algorithm is expressed by:

wi=0.5E;;+0.4€[04,09], VE; €[0,1] (30)

where w is initialized to be 0.9; and E s is the EF. The values of the acceleration coefficients are listed in Table 4.

Table4 Acceleration Coefficient Updating Strategies of the SPSO Algorithm

Evolutionary State Eg & C1ek Co ok
Convergence [0,0.25) 1 2 2
Exploitation [0.25,0.5) 2 2.1 1.9
Exploration [0.5,0.75) 3 2.2 1.8
Jumping-out [0.75, 1] 4 1.8 2.2

The steps of the SPSO algorithm are presented in Algorithm 3.

Algorithm 3 The Procedure of the Switching PSO Algorithm

1: Initialize the parameters

2: Set a swarm that has p particles

: Initialize the position x;; and the velocity v; 1, and pi; | of each particle (i = 1,2,..., P); and initialize pg; of the swarm

: Calculate current evolutionary states based on Equation (25) and Equation (29)

: Predict the state in the next generation

: Adjust w according to Equation (30) and adjust ¢; and ¢, according to Table 4

: Update the velocity v;x and the position x;x of each particle according to Equation (28) with Markovian jumping parameters

: Update the pi;x of each particle and pg; of the swarm

O 0 3 O W»n A~ W

: Confirm whether the maximum iterations are met or the fitness value reaches the threshold, if not, go to step 4

33

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

In [24], A dynamic-neighbourhood-based SPSO (DNSPSO) algorithm has been developed, where the evolu-
tion information of the swarm is used in the velocity updating process based on (1) a distance-based dynamic neigh-
bourhood; and (2) the switching strategy. The velocity of ith particle at the (k + 1)th iteration can be calculated by:

Viksl = Wik +Crgh (Pii,gk - xi,k) +Cos1 (ngk - xi,k) (1)

where w denotes the inertia weight; 7 and r, are two random numbers selected from [0, 1]; ¢, ¢ and ¢, ¢, are acceler-
ation coefficients; pi; ., represents the personal best position found by the ith particle itself; pg,, represents the global
best position of the entire swarm; & denotes four different evolutionary states. Note that pi; ., and pg,, are updated
based on the dynamic neighbourhood. The evolutionary state can be calculated according to Equation (25) and Equa-
tion (26) [21]. The DNSPSO algorithm improves the solution accuracy and enhances the particle’s ability of slipping
away from the local optima comparing with the SPSO algorithm. The technical details of the DNSPSO algorithm are
summarized in Table 5.

Table 5 Velocity Updating Strategies of the DNSPSO Algorithm

Evolutionary State Eg & ek Co ok
Convergence [0, 0.25) 1 2 2
Exploitation [0.25,0.5) 2 2.1 1.9
Exploration [0.5,0.75) 3 2.2 1.8
Jumping-out [0.75, 1] 4 1.8 2.2

Based on the SPSO algorithm, an improved SPSO (ISPSO) algorithm has been introduced in [62], where a non-
stationary multistage assignment penalty function is introduced. The updating strategy of velocity jumps from each
mode based on the non-homogeneous Markov chain, which uses the swarm diversity as the current search informa-
tion to adjust the probability matrix in order to balance the global and local search.

In [23], a switching time-delay-embedded PSO (SDPSO) algorithm has been introduced, where the time delay
is employed to alter the system dynamic of the SPSO algorithm. The utilized time delays contain the historical infor-
mation of the evolutionary process. The velocity and position of the ith particle at the (k + 1)th iteration are given as
follows:

Vik+1 =WVip T Cre T (pii,k—‘rl_sk - xi,k) +tCoe (ng—rm - xi,k) (32)
Xik+1 =Xik T Vik+1

where ¢ ¢ and c,, are acceleration coefficients; 7 and r, are two separate random numbers generated within [0, 1];
Ti¢ and 7, denote the delay; pi;, represents the personal best location found by the ith particle itself; pg; repre-
sents the global best location of the entire swarm; and &, is a non-homogeneous Markov chain which is used to
determine the parameters. The updating strategies of the inertia weight and acceleration coefficient are same as the
SPSO algorithm. The convergence speed and the global optimality of the SDPSO algorithm are competitive by com-
paring with some existing PSO variants.

The multi-modal delayed PSO (MDPSO) method has been developed in [63], where the so-called multi-modal
time-delay is embedded into the velocity model to enlarge the search space and reduce the probability of being
trapped in the local optima. In the MDPSO algorithm, the velocity updating equation of the ith particle at the (k + 1)th
iteration is given by:

Vikrt = Wik + 111 (Pl — Xi) + €212 (P8k = Xik) + S1.4€373 (Plih—ri, — Xik) + S24CaTs (ngfrgk - xi,k) (33)

where w denotes the inertia weight; ¢; (i = 1,2,3,4) are the acceleration coefficients where ¢; = ¢; and ¢, = cy4; r;
(i=1,2,3,4) are random numbers from [0, 1]; 7i; and 7g, indicate the randomly generated time-delays within [0, k]
of the local and global best particles; and s, and s, are two intensity factors. The velocity updating strategy of the
MDPSO algorithm is summarized in Table 6.

Table 6 Velocity Updating Strategies of the MDPSO Algorithm

Evolutionary State Eg iy, g Tiy, TG
Convergence [0, 0.25) 0 0 - -
Exploitation [0.25,0.5) Ef 0 Lk X rri] -
Exploration [0.5,0.75) 0 Erk ; Lk X reg)
Jumping-out [0.75, 1] Efi Efrp lkX rei] kX reg]

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

In Table 6, | -] represents the round down function. r;; and r,, are two random numbers uniformly selected from
[0, 1]. The MDPSO algorithm is able to reduce the probability of trapping into the local optima with satisfactory con-
vergence rate.

A novel randomly-occurring-distributed-time-delay PSO (RODDPSO) algorithm has been proposed in [22],
where the distributed time-delays are employed to perturb the dynamic behaviour of the particles. The delays occur
randomly, which contributes to a better search ability than the SDPSO. The velocity of the ith particle at the (k + 1)th
iteration is updated by:

s s
Vikel = WVig+C1r (pii,k - xi,k) +Cor (Pgy — Xig) + My g,C373 Z @, (pi,.’k_T - xi,k) + My g Caly Z @ (Pgr_r — Xik)

=1 =1
(34

where S denotes the upper bound of the distributed time-delays; «; is a vector with S-dimension, and each member
of @, is chosen from 0 or 1 randomly; pi;, represents the personal best position found by the ith particle itself; pg;
represents the global best position of the entire swarm; m, ., and m, . _indicate the intensity of the distributed time-
delays; and &, denotes the current evolutionary state. The evolutionary state is determined by Equation (25) and
Equation (26) [21]. The velocity updating strategy of the RODDPSO algorithm at each evolutionary state is summa-
rized in Table 7.

Table 7 Velocity Updating Strategies of the RODDPSO Algorithm

Evolutionary State Efx Ex mi g, my.g,
Convergence [0, 0.25) 1 0 0
Exploitation [0.25,0.5) 2 0.01 0
Exploration [0.5,0.75) 3 0 0.01
Jumping-out [0.75, 1] 4 0.01 0.01

In [64], 2 modified switching PSO algorithm with adaptive random fluctuations (ARFPSO) has been intro-
duced, where the velocity is updated based on the evolutionary states, and the adaptive random fluctuations are added
to the pbest and the gbest particles. According to the simulation results reported in [64], the ARFPSO algorithm
shows superior performance in terms of search the optimal solution.

In [65], a PSO algorithm with fractional velocity (FVPSO) has been developed, where the fractional-order
velocity terms are added to the velocity updating equation. The FVPSO algorithm enhances the particle’s ability of
jumping out of the local optima. Based on the FVPSO algorithm, an adaptive fractional-order velocity SPSO
(FVSPSO) algorithm has been presented in [66], where the fractional velocity is updated based on the evolutionary
state. The velocity of the ith particle at the (k + 1)th iteration of the FVSPSO algorithm is updated by:

1 1
Viksl =QVig + 501/((1 — @)Vig-1 + gak(l —)2 - ap)Vig—
(35)

1 .
+ ﬁak(l —)2 —) B = aViges + cir (Plix — Xig) + c2r2 (P&r — Xix)

where ¢, and ¢, are acceleration factors; ry, r, are two random numbers in [0, 1]; pi;; is the personal best position
found by the ith particle itself;, pg, represents the global best position of the entire swarm; and «; denotes the frac-
tional order of the velocity, which can be calculated by:

1 k

=09- —FF—x—
o l+exp(=Ef;) K

(36)
where E) represents the evolutionary factor obtained by Equation (25) and Equation (26) [21]. The FVSPSO algo-
rithm improves the search ability and could make the particles easily jump out of the local optima.

The asynchronous PSO algorithm has been brought up in [67]. Compared with the standard PSO method, the
asynchronous PSO method exhibits faster convergence rate. The asynchronous updating strategy could delay the
convergence of the swarm, while the synchronous updating strategy could accelerate the convergence [68]. In [58],
an adaptive switching asynchronous-synchronous PSO (SASPSO) algorithm has been proposed, where the asyn-
chronous updating strategy and the synchronous updating strategy are hybridized, which could switch from one to
another according to the fitness value of the gbest.

3.2.3. Other Strategies
In [69], the clustering algorithm has been utilized in the PSO (CAPSO) algorithm to group the particles based

35

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

on their previous best positions, and the cluster centroids are replaced by particles’ personal best positions and neigh-
bours best positions. According to the experimental results reported in [69], it is found that the CAPSO algorithm
(using personal best positions as the cluster centroids) performs better than algorithms using neighbours’ best posi-
tions as cluster centroids.

The constriction factor and its variants have been put forward in [46, 70, 71], which improves the convergence
rate of the optimizer by limiting the motion of individuals in the optimal region. The velocity and position of the PSO
algorithm with constriction factors (CFPSO) are updated by:

Vige1 =X X Vig + 171 (Plix — Xix) + 22 (P8 — Xix)
Xik+1 =Xik T Vig+1

(37)
=ci+c,¢ > 4

2
ey

where y is the constriction factor; |-| is the absolute value of ““”’; r; and r, are two constants randomly generated
within [0, 1]; and ¢ is a parameter to adjust the constriction factor where ¢ = c¢; + ¢,. Normally, ¢ and y are set to be
4.1 and 0.729, respectively.

In [72], two cooperative PSO (CPSO) algorithms have been proposed (i.e., CPSO-S ¢ and CPSO-Hy), where
the cooperative behaviours are utilized to improve the solution accuracy.

In [34], a comprehensive learning (CL) strategy has been proposed, where the particle’s velocity is updated
according to the personal best locations of all other particles. The CLPSO algorithm demonstrates better performance
in solving muti-modal problems compared with the standard PSO algorithm. The velocity of the ith particle at the
(k + Dyth iteration of the CLPSO algorithm is shown as follows:

Vig+1 = Wik +CTig (Pif;.k - xi,k) (38)

where f;; represents which particle’s pbest should be followed by the ith particle. The learning probability P, decides
which particle should be chosen for the ith particle to learn from. More specifically, a number of random numbers are
created based on the dimensions of the ith particle. If the random number is larger than P, the particles will learn
from its own pbest at the corresponding dimension. Otherwise, the particle will learn from another one’s pbest by
using a tournament selection procedure at the corresponding dimension.

In [73], a multi-elitist PSO algorithm (MEPSO) has been introduced, where the multi-elitist strategy has been
employed in the PSO algorithm to improve the global search, which improves the search ability of the PSO algo-
rithm.

In [27], a field-programmable gate array (FPGA)-based parallel meta-heuristic PSO (PMPSO) algorithm has
been proposed, which employs the parallel computing strategy to run three parallel PSO algorithms in the same
FPGA chip. According to the experimental results reported in [27], the PMPSO algorithm shows the merit in solving
some global path planning problems.

An improved PSO algorithm with a detection function (IDPSO) has been presented in [74], where the control
parameters are updated based on the detection function. The control parameters (i.e., wy, ¢1x and ¢,) at the kth itera-
tion are updated by:

Wi =Wy
k—K(1+Ingy)

+
1 +exp cpkx—)
o

Wy =

(39
cip=c1 X!

_ -1
Coj =Co Xy

where K is the maximum iteration number; w; and w; represent the initial and final inertia weight, respectively; ¢y
represents the detection function; and u is an adjustment factor. The IDPSO algorithm improves the search ability of
the particle.

In [75], the quantum PSO (QPSO) algorithm has been proposed, where the quantum theory is introduced into
the PSO algorithm. A trial method for adjusting parameters has also been proposed. A new parameter tuning method
has been put forward in [76] to adjust the control parameters of the QPSO algorithm, where a global reference point
has been introduced to evaluate the search range of the particle. The QPSO algorithm with the new parameter selec-
tion strategy has shown better performance than the standard QPSO algorithm in terms of convergence and solution
accuracy.

3.3. Improving Topological Structures
Developing new topological structures becomes a popular way to design PSO algorithms. A lot of topological

36

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

structures have been put forward to improve the performance of the PSO algorithm. The reviewed approaches on
developing new topological structures of the PSO algorithm are summarized in Table 8.

Table 8 Improving Topological Strategies of the Algorithm

Approach Abbreviated Name Reference
Neighborhood Operator NOPSO 16]
Fitness-distance-ratio Based FDR-PSO 81]
Dynamic Multi-swarm DMSPSO 82]
HPSO 11]

Hierarchical Structure

[
[
[
[
AHPSO [11]
[
[
[
[
[

NPSO-1 85]
SBPSO 36]
Niching ANPSO 34]
DLIPSO 87]
TPSO 83]

The neighbour of each particle can be divided into two categories (including the local best (i.e., Ibest) and the
global gbest (i.c., gbest)), which is depicted in Figure 3 [77]. The particle in the lbest neighbourhood is affected by its
immediate neighbours’ best performance. The particle in the gbest neighbourhood is attracted to the best solution

found by the entire swarm.

Figure 3. The lbest (left) and the gbest (right) topologies of the PSO algorithm.

The social network topology of the swarm has been modified in [78], which shows that the impact of the topol-
ogy is different based on the objective function. PSO algorithms using different topological structures (including the
Ibest, the gbest, the pyramid, the star, the “small”, and the von Neumann) have been evaluated and discussed in [79].
The experimental results reported in [79] indicate that the von Neumann configuration has consistent performance. In
[80], a fully informed PSO algorithm has been put forward, where the velocity of the particle is updated according to
the information from its neighbours. The network topologies of the star and the von Neumann are shown in Figure 4.

X H

Figure 4. The star (left) and the von Neumann (right) topologies of the PSO algorithm.

In [16], the PSO algorithm with the variable neighbourhood operator (NOPSO) has been introduced, where the
size of the lbest neighbourhood increases gradually until the whole swarm is connected during the evolutionary pro-
cess. It should be noted that the gbest is replaced by the Ibest solution to improve the search ability and avoid the
local optima, which means the information is only shared locally. The neighbours can be defined by either the posi-
tion compared with other particles or the proximity [32].

In [81], a fitness-distance-ratio based PSO (FDR-PSO) algorithm has been proposed, where the FDR is used to
calculate the nbest. Note that nbest represents a particle’s best nearest neighbour, which is used to update the particle’
s velocity. The velocity of the ith particle at the (k + 1)th iteration is updated by:

Vikel = Wi+ C1(Piig — Xig) + (P& — Xig) + c3(Phy — Xi) (40)

where w is the inertia weight; ¢, ¢, and c¢; are the acceleration coefficients; pi, represents the personal best position
found by the ith particle itself; pg, represents the global best position of the entire swarm; and pn;, represents the his-
torical best experience of the nbest. The velocity is updated according to three factors, which are the pbest, the gbest

37

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

and the historical best experience of the nbest. The FDR-PSO algorithm could alleviate the premature convergence
during the evolutionary process.

In [82], a dynamic multi-swarm PSO (DMSPSO) algorithm has been introduced, where the swarm is divided
into many small swarms and randomized frequently. Each small swarm searches the solution by itself in the search
space. In order to improve the information exchange, a randomized regrouping schedule is introduced, where the
population is regrouped randomly at every iteration and begins to search with a new configuration of small swarms.
This neighbourhood structure shows competitiveness in solving complex multi-modal problems.

In [11], a hierarchical PSO (HPSO) algorithm has been proposed, where the particles are placed in a dynamic
hierarchy and moved in the hierarchy according to the discovered best solution. The HPSO variants have been devel-
oped by adjusting the inertia weight. The updating rules of the inertia weights (w; x and w5 ;) are given below:

(Wmax - Wmin)k
= — . 41
Wik 1 Winin (41)
(Wmin - Wmax)k
— Wmin 7 Wmax)% 42
Wk o1 T Wma (42)

where k denotes the level of the hierarchy; wy,,, and wy,;, are the maximum and minimum of the inertia weight,
respectively; and £ is the maximum level of the hierarchy. The AHPSO algorithm uses Equation (41) to update the
inertia weight (i.e., w;), where the inertia weight of the root particle is denoted by wy,;,. The inertia weight of the
vHPSO algorithm (i.e., wy) is updated by Equation (42), in which wy,,, represents the inertia weight of the root par-
ticle. According to the experimental results reported in [11], the HPSO algorithm shows satisfactory performance for
both uni-modal and multi-modal optimization problems.

Inspired by the GA, niching is employed in PSO so as to increase the number of solutions for multi-modal opti-
mization problems. Niching divides the swarm into several parts to explore the optimal region as much as possible.
Recently, a few niching PSO methods have been developed [83—87]. In [85], a niching PSO (NPSO-1) algorithm has
been proposed to solve the multi-modal problems. Each particle searches in the problem space separately until the
variance of the particle’s fitness values of the last three iterations is smaller than a threshold. Then, a sub-swarm of
this particle and its nearest topological neighbour is generated. It is worth mentioning that other particles can join the
sub-swarm when they move into the area of the sub-swarm. The NPSO-1 algorithm improves the search ability and
the convergence accuracy.

In [86], a species-based PSO (SBPSO) algorithm has been developed, where all individuals are divided into a
number of sub-groups of individuals based on the similarity. Different species would not share information with each
other, which enhances the search performance of the algorithm when solving multi-modal optimization problems. In
[84], a niching PSO algorithm with an adaptively niching parameters choosing strategy (ANPSO) has been proposed,
where the statistical information of the population is utilized to adaptively update the niching parameters so as to
improve the convergence rate and the solution quality of the optimizer. In [87], a distance-based locally informed
PSO (DLIPSO) algorithm has been developed, where a number of lbests are utilized to guide each particle’s search,
which improves the search ability and avoids specifying the niching parameters.

3.4. Hybridizing with the EC Algorithms

Hybridizing with other optimization algorithms is also an important method for improving PSO algorithms.
Many EC algorithms have been combined with the PSO algorithm so as to further improve the searching perfor-
mance of the optimizer. The reviewed approaches on hybridizing with other EC algorithms are summarized in Table 9.

Table9 Hybridizing the PSO Algorithm with Other EC Algorithms

Approach Reference
Hybridizing with the GA [25, 88, 89, 92, 93, 95-97, 98—100]
Hybridizing with the ACO Algorithm [101]

Hybridizing the SA Algorithm [12]

Combining with the Nelder-Mead Algorithm [102]

Combining with the Differential Evolution [26]

3.4.1. Hybridizing with the GA

The genetic algorithm is inspired by biological evolution, which contains lots of computational models. So far,
some researchers have focused on combining the GA and the PSO algorithm to further improve the performance (e.g.
convergence performance and global search ability) of the PSO algorithm.

38

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

In [88], three hybrid algorithms have been proposed, where the modification strategies using the GA are
employed in the PSO algorithm. In the first strategy, the position of the gbest particle is not changed at some assigned
iterations, and the crossover operation is applied to perturb the gbest. In the second strategy, the positions of pbest
particles which are slow or stagnated are changed by a mutation operator. In the third strategy, the searching process
is equally divided into two parts, where the first part runs the GA and the second part runs the PSO algorithm. In the
PSO part, the initial swarm is assigned by using the solution of the GA. According to the experimental results
reported in [88], three algorithms exhibit satisfactory convergence rate.

A PSO algorithm with the EC-based selection mechanism has been introduced in [89], where a form of tourna-
ment selection is also developed. By comparison of the particles’ current fitness, the particles can be divided into two
parts. The selection mechanism could change the values of the current positions and velocities of the “bad” half of the
population by using the values of the “good” half of the population without changing the pbest of particles.

It is known that the mutation is an important step in the GA. Recently, the mutation operator has become an
important method in developing EC algorithms, which could (1) prevent the loss of the population diversity to some
extent; and (2) expand the search space [90]. The mutation operator could add new individuals to the population by
creating a variation so that the population diversity can be improved [91].

In [92], a PSO algorithm with the Gaussian mutation operator has been proposed, where the dimension of the
particle’s position is changed by the mutation operator which obeys the Gaussian distribution. The Gaussian muta-
tion operator (denoted by M(x;)) is shown as follows:

M(x) =x(1+0) (43)

where o is a random number which obeys the Gaussian distribution.

A mutation operator has been added to the PSO algorithm in [25], where a random number drawn from a
Cauchy distribution is added to the component that needs to be mutated. The improved PSO algorithm with the pro-
posed mutation operator improves the convergence rate of the optimizer and the ability of escaping from the local
optima. The mutation operator (denoted by M(x;)) is expressed as follows:

M(x)=x(1+a) (44)

where « is a random number which obeys the Cauchy distribution. The components of the particle (chosen to be
mutated) is randomly selected with the probability é D is the dimension of the particle.

In [93], a PSO algorithm with a nonuniform mutation operator (designed in [94]) has been developed. The
operator works by changing the dimension of each individual particle. By using the nonuniform mutation operator,
the performance of the PSO algorithm is improved especially for handling multi-modal problems.

In [95], a learning strategy and a mutation operator named Gaussian hyper-mutation have been added to the
asynchronous PSO algorithm in order to enhance the convergence and maintain the population diversity.

The linkage is a concept in the GA algorithm. In [96], a linkage-sensitive PSO (LSPSO) algorithm has been
introduced, where the elements of a linkage matrix are employed. The linkage matrix is calculated based on the per-
formance of some randomly generated particles with perturbations. The positions of the particles which are linked are
updated at the same time.

In [97], a PSO algorithm with recombination and dynamic linkage discovery (PSO-RDL) has been presented. A
dynamic linkage discovery strategy is designed, where a linkage configuration is updated according to the fitness
value, which is easy to implement and has a high efficiency. During the evolutionary process, a number of linkage
groups are assigned, and the linkage configuration is adjusted according to the fitness value. If the average fitness
value meets the threshold, the current linkage configuration will not be changed. Otherwise, the linkage groups will
be reassigned randomly. In addition, a recombination operator has been designed to generate the next population by
choosing and recombining building blocks from the pool randomly. The PSO-RDL algorithm shows competitive
performance compared with several selected PSO variants.

In [98], a hybrid PSO algorithm with breeding and sub-populations has been developed. The population is
divided into several sub-populations. Two particles are chosen randomly for breeding, and the arithmetic crossover is
used during the breeding process. The parents are replaced by the offspring at the end of each iteration. The positions
of the two particles (offspring) at the (k + 1)th iteration are expressed as follows:

Xige1 = FXi g+ (1 =1)Xing 45)
Xige1 = FXipg + (1 =1)Xinx
where r is the random number in [0, 1]. The hybrid PSO algorithm with breeding and sub-populations obtains faster
convergence rate than that of the standard PSO algorithm as well as the standard GA.
A PSO algorithm with the novel multi-parent crossover operator and a self-adaptive Cauchy mutation operator

39

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

(MC-SCM-PSO) have been developed in [99], where the particle influenced by the multi-parent crossover operator
can learn from three particles in the neighbourhood. The position of the offspring at the (k+ 1)th iteration of the
introduced algorithm is calculated as:

Xijs1 = T X+ TaXg g+ T3Xpx + T4 X0k (406)

where a, b, and ¢ are three selected particles; and r; (i = 1,2,3,4) are four random numbers selected from [—1,4].
The MC-SCM-PSO algorithm could greatly increase the chance of slipping away from the local optima especially
when solving multi-modal optimization problems.

In [100], six PSO variants with discrete crossover operators have been proposed, which choose the second par-
ents and the number of crossover points in different ways. Experimental results show that two proposed PSO vari-
ants outperform the standard PSO algorithm.

3.4.2. Hybridizing with Other Evolutionary Methods

Apart from the GA, the PSO algorithms have also been hybridized with some other EC methods (such as the
ACO algorithm, the SA algorithm and the differential evolution (DE) algorithm) with the purpose of improving its
performance in convergence and solution accuracy.

In [101], a hybrid optimization algorithm which combines the FAPSO algorithm with the ACO algorithm
(FAPSO-ACO) has been presented, where the control parameters of the FAPSO algorithm are adjusted according to
the fuzzy rules. The decision-making structure is added to the FAPSO algorithm, which improves the performance of
the PSO algorithm. In [102], the FAPSO algorithm has been combined with the Nelder-Mead (NM) simplex search,
where the NM algorithm is considered as a local search algorithm to search around the global solution, which signifi-
cantly improves the performance of the FAPSO algorithm.

The hybridization of PSO and SA (PSO-SA) has been introduced in [12]. The SA algorithm is utilized to search
the global solution, and a mutation operator is used to enhance the communication between particles. According to
the experimental results reported in [12], the PSO-SA algorithm has fast convergence rate and high accuracy.

Based on [18] and [62], the switching-local-evolutionary-based PSO (SLEPSO) algorithm has been developed
in [26]. In SLEPSO, ISPSO is integrated with DE, and thus improves (1) the search ability of the current local best
particles; and (2) the chance of slipping away from the local optima.

4. Applications of the PSO Algorithm

In this section, some selected practical applications of the PSO algorithm are reviewed, which are divided into 6
categories including robotics, the renewable energy system, the power system, data analytics, image processing and
some other applications.

4.1. Robotics

4.1.1. Path Planning for Robots

Autonomous navigation of the mobile robot is a crucial task in robotics. The autonomous navigation process is
illustrated in Figure 5. As an important task in autonomous navigation, path planning has been widely investigated,
which is known as an optimization problem in certain indices with some certain constraints [103—105]. So far, a
number of PSO algorithms have been adopted to solve the robots path planning problems.

40

1JNDI, 2023, 2(1): 24-50. https://doi.org/10.53941/ijndi0201002

Path planning
lPath

Motion control

l

Environment

l

Perception

lLocal map

Localization and
map building

Map/position
End

Figure 5. The autonomous navigation process of the mobile robot.

In [27], the PMPSO algorithm has been applied to deal with the navigation of the autonomous robot in struc-
tured environments with obstacles. In [106], the SLEPSO algorithm has been used to solve the path planning prob-
lem of the intelligent robot. In [63], the MDPSO algorithm has been successfully applied to the path planning for
mobile robots. In [107], the novel Chaotic PSO method has been put forward to