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Abstract: Unknown correlations (UCs) generally exist in a wide spectrum of practical multi-source
information fusion problems, and thereby, their corresponding fusion problems have become one of the
most important topics in information fusion domain. During the past three decades, the research on this
topic has been growing rapidly and extensively, and, as a result, various important advances have been
reported. In this overview, we intend to summarize the culmination of years of development in the field
of information fusion under UCs as a roadmap. First, the potential reasons leading to UCs are investi-
gated. According to the unknown nature of correlations, we further divide UCs into two categories, i.e.,
fully UCs, and partially UCs. For each category, the corresponding fusion methods are reviewed. Next,
this roadmap witnesses the recent development of information fusion under UCs in a distributed way
thanks to the popularity of distributed sensing technology. In particular, the distributed fusion techniques
based on consensus, diffusion, and multi-object tracking strategies for UCs are examined. Finally, some
future perspectives on information fusion under UCs are pointed out.

Keywords: covariance intersection; unknown correlations; partially unknown correlations; multi-sensor
fusion; diffusion; consensus

1. Introduction

As it is put forward in [1], the essence of information fusion techniques is to combine data from multiple sen-
sors, and related information from associated databases, to achieve improved accuracies and more specific inferences
than that could be achieved by the use of a single sensor alone. From a mathematical perspective, the essence of the
unbiased linear combination of multiple estimates (let me assume that there are two estimates for the sake of conve-
nience in the following discussion) in a Kalman filter framework is to find gains K*,i = 1,2, such that the fused esti-
mate £, = K'%' + K2£? is optimized according to a cost function of the fused error covariance J(Py) [2,3], i.e.,

argminJ (P;) subjectto K'+K>=1, )
K'.K?
where
. R 2 INT
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If the cross-covariances P!2 and p?! are known, the solution to Equation (1) is the famous Bar Shalom-Campo
(BC) fusion equation [4]. Unfortunately, in many practical scenarios, due to a variety of reasons, their cross-covari-
ances are usually unknown, and this phenomenon is often referred to as unknown correlations (UCs) [5], or unavail-
able cross-correlations [6], or unknown cross-covariances [7].

It should be noticed that, if UCs are not accommodated appropriately, they may degrade system performance
significantly. Therefore, there is no wonder that the topic information fusion under UCs has been drawing consider-
able attention from both theoretic development and industrial applications. Among them, it is the covariance intersec-
tion (CI) [5] and its variants that dominate the research in this matter. Generally, these developments are mainly
about: (1) improving CI in terms of both efficiency and accuracy, and (2) applying CI to a diversity of industrial
tasks. However, CI is somewhat conservative as it treats UCs as completely unknown. Li et al. [8] proposed that it is
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more reasonable to further divide UCs into two groups: namely, fully UCs and partially UCs with respect to their
unknown nature, and based on that available information about UCs, it is promising to develop more efficient fusion
methods, see, e.g. [9,10], for some latest results.

Recent advances have witnessed a growing trend in the distributed fusion related topics mainly due to an
increasing popularity of the distributed sensing technology. As a result, the information fusion under UCs in a dis-
tributed way has been attracting considerable attention, where distributed strategies such as consensus [11—-14], diffu-
sion [15,16], and multi-object tracking [17] have been adopted. In this overview, we provide a roadmap that outlines
a series of developments and advances of the information fusion methods under UCs. It follows a roadmap depicted
in Figure 1. The remainder of this overview is given as follows. In Section 2, the potential reasons leading to UCs are
presented. According to the way that it deals with UCs, the information fusion methods under UCs are grouped into
three categories, i.¢., fusion under fully UCs, fusion under partially UCs, and distributed fusion under UCs, and they
are reviewed in Sections 3—5, respectively. Section 6 concludes this overview with some future perspectives.

Notation. Throughout this review, we adhere to the following notations if not specified otherwise: For a matrix
M, M", and pM~! separately represent its transpose and inverse. M > 0 (respectively, M =0) means matrix M is pos-
itive definite (respectively, positive semi-definite). tr(M) and det(M) are the shorthands for the trace and determinant
of the matrix M. Besides, 1, is the identity matrix with dimension n. N' = {1,2,--- N} is a set of N sensor nodes. An
edge (i, j) € & indicates node j can receive information from node i. If node i is included in its neighbors, we denote
this neighborhood as N; (N; = {j | (j, i) € &}); otherwise, we denote it by NV;\i.
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Figure 1. A roadmap of the development of fusion under unknown correlations.

2. Root Causes of Unknown Correlations

Unknown correlations (UCs) [5] are commonly referred to as unavailable cross-correlations [6], or unknown
cross-covariances [7]. Based on the literature reviewed, the main reasons attributing to UCs can be grouped into the
following two categories:

(1) Lack of knowledge of the true system

* Unidentified correlations — Correlations, as yet unidentified, may occur during the vehicle motion,
where the observation noises of a suite of navigation sensors mounted on the same vehicle might be corre-
lated with one another [5].

* Unguaranteed assumptions — It is often widely believed that the errors associated with the current sys-
tem estimate and the new measurement are uncorrelated; however, this is not true as any nonlinear transfor-
mation will equitably introduce time-correlated errors, which may introduce a certain degree of unknown cor-
relations in the final implementation [18]. Another example can be found in robotic control systems where it is
common to assume data-flows among multiple interconnected algorithms are independent; however, there is no guar-
antee of this mutual independence in practice [19]. The other scenario usually arises in probabilistic fusion
approaches. When combining information from varied sensors, the corresponding conditional probabilities are usu-
ally presumably conditionally independent, however, such an assumption is not genuinely guaranteed [20].

(2) Correlations that are either too expensive to maintain or too difficult to describe

* Difficulties in maintaining — The process models of applications such as weather forecasting, and map-
making could involve hundreds of thousands of variables, which suggests that maintaining a complete history
of covariances becomes impossible [5]. Another example can be found in the decentralized data fusion within the
Bayesian framework, where it requires dependence between uncertain variables to be defined in terms of joint or
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conditional probability density functions (PDFs). However, maintaining this joint structure will probably incur signif-
icant bookkeeping and communications overhead, and impose strong constraints on network topology. Hence, a fea-
sible implementation may necessitate suboptimal fusion procedures that discard some dependency information [21].

* Double counting [22,23] or data incest [24] phenomena — Owing to the fact that, instead of the raw sen-
sor data, it is the estimates that propagate through the network, the problem of double counting generally
exists in distributed information fusion problems [25]. In particular, this phenomenon becomes more severe in
networks with potential "network looping" [17], where the common information can travel in loops [26]. Hence, the
information may inadvertently be used several times. In this case, the resulting correlation is cumbersome to identify
due to that it is related to several aspects including, but not limited to, the fusion protocol, the network topology
(except when it is connected through a tree-shape topology where only one single path exists between any pair of
sensors [22]), and the number of communicating iterations [26].

* Rumor propagation [27,59]— For example, in a typical distributed tracking systems for tactical mili-
tary missions, the scenarios contributing to unknown correlations are threefold. First, tactical systems are
often consisting of sensor nodes and processing nodes that are connected over the dynamic and unpredictable
mobile ad-hoc networks, wherein the processing nodes produce fused solutions rather than the raw sensor
measurements. Hence, eliminating redundant data flows between nodes is virtually impractical in real-time.
Next, many legacy systems cannot produce statistically independent updates by (1) modifying tracking data
[27,59] because of the common process noise, or (2) providing lineage or pedigree information with each estimate
that allows its cross-covariance with other estimates to be determined before fusion with a Kalman filter [28]. Lastly,
the tracking data shared between the processing nodes is of a variety of statistics such as Gaussian, non-Gaussian,
active, and passive [27,59].

In summary, the reasons leading to UCs are abundant. Moreover, it is generally believed that UCs are ubiqui-
tously existing in a diverse range of information fusion and distributed filtering issues, and neglecting the effect of
UCs may lead to grave consequences of the deterioration of fusion performance. Hence, there is a great need to tackle
this phenomenon effectively. Fortunately, during the past decades, many important theories and applications have
been reported in this area. According to the unknown nature of UCs, the fusion methods can be immediately divided
into fusion under fully UCs, and fusion under partially UCs.

3. Fusion under Fully Unknown Correlations

In this section, we focus on the advances of the methods developed in dealing with UCs, in particular, fully
UCs. Roughly speaking, these developments have gone through three periods: prior to CI, CI, and posterior to CI.
Especially, after the introduction of CI in 1997, new improvements, insights, ideas, and applications are reported sub-
sequently. Hence, it is necessary to further review the posterior to CI period in terms of the following three aspects,
that is, more accurate CI, faster CI, and applications.

3.1. Prior to Covariance Intersection

Even though the study of multi-sensor fusion technologies can be dated back as early as the beginning of 1970s
[29], the road leading to a satisfied fusion solution to address unknown correlations is not smooth mainly due to the
intricate nature of unknowns. One intuitive method is the naive fusion [30], or the simple convex combination (SCC)
[31],1ie.,

N
Pl =y, 3)
i=1

N
gp=Ppy (PY'# )
i=1

where Pi and & are the error covariance and estimate of information source i, and P, and £ are fused ones, respec-
tively. This method has been applied in [32] for a head tracking problem. As can be seen from Equations (3) and (4),
the method ignores the inherent correlations directly. In this sense, this method is too optimistic [33], and in general
cannot guarantee consistent (A filter is said to be consistent if its estimated error covariance P is an upper limit of the
true error covariance, i.e., B{(x— £)(x— %)} < P, where % is an unbiased estimate of x [34].) results [35]. To com-
pensate this kind of over-confidence, a common suboptimal approach is established by increasing the process noise
manually. However, this heuristic method calls for considerable certain expertise and undermines the foundation of
the Kalman filter framework [36]. Another typical solution of avoiding this over-confidence is to rely on artificially
inflating the "fused" covariance. However, this method should be considered on case-by-case basis and not reliable as
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the degree of inflation may not be accurately quantified [20].

3.2. Covariance Intersection

Fortunately, in 1997, the covariance intersection (CI) fusion rule [5], which was first reported by S. J. Julier and
J. K. Uhlmann, provided an effective tool to tackle with UCs. The algorithm is detailed as follows:

Py = Elv:wi(Pi)’l, ®)
i=1
N
R =Pp Y W(PYE, (6)
i=1
with
W' = arg wr?[%)nl Jtr(Pf) (7

where fusion weights satisfying Zf\il w' = 1. Note that, different criteria such as trace and determinant, or the mini-
mum information loss fusion [37] can be used to find optimized weights. Their generalizations include maximizing
the peakiness of the distribution [38], or maximizing the complementary squared Mahalanobis distance between the
individual and the targeted estimates [39], or minimizing the Bayesian error/Chernoff information or Shannon
entropy [19]. In particular, the cost functions tr(P,) and In det(P;) are both convex in terms of CI fusion rule [40,
Theorem 2].

Compared with the methods prior to CI in dealing with UCs, the CI fusion has the following benefits [41]. (1)
The cumbersome procedure of identification and computing of cross covariances is dismissed; (2) It produces a con-
sistent fused estimate, and thereby a non-divergent fuser is established; (3) The accuracy of the fused estimate sur-
passes that of local ones; (4) It has robustness against UCs as it yields a common upper limit of the true estimation
error covariances, and as pointed in [3], this bound is optimal when it fuses two estimates subject to strictly mono-
tonically increasing cost functions such as trace and determinant. As for the fusion of more than two estimates, its sub-
optimality was discussed in [42] along with some geometrical explanations [43]. In terms of the fusion accuracy, a
comparison was conducted in [44] between CI and three other optimal fusion rules.

Meanwhile, an information-theoretical interpretation of CI, i.e., Chernoff fusion was reported in [19], and its
generalization can be found in [30]. Under this justification, the familiar product form of Bayes rule can be under-
stood as the geometric mean, or exponential mixture [45], or weighted Kullback-Leibler average [17,24]. To derive
the optimized parameters of the optimal Chernoff fusion exponent in an efficient way, the Monte Carlo importance
sampling and the sigma-point approximation methods have been proposed in [46] and [47], respectively.

3.3. Posterior to Covariance Intersection

Due to its superiority over other alternatives, CI has quickly become the first option of fusion methods in deal-
ing with UCs since its induction in 1997. Since then, CI has stimulated much research attention from a broader com-
munity to improve, generalize, and apply this fusion method. Generally, those developments can be summarized into
the following categories.

3.3.1. More Accurate Covariance Intersection

On the contrary of SCC, CI is too pessimistic [33] as it always guarantees a consistent bound on the error
covariances. In this sense, CI is sub-optimal in comparison with the algorithms that can make use of the information
about cross-correlation. As a result, during the past two decades, great efforts have been spent to improve the fusing
accuracy of CI. Generally, most of them can be classified into the following six groups.

(1) Largest ellipsoidal algorithm [48]. Different from CI that overestimates the intersection region, a new fusion
method, called largest ellipsoidal algorithm (LEA) [48], was designed to slightly underestimate this region. The main
idea of LEA is to find the largest ellipsoid encompassed by the intersection region. However, as mentioned in [49],
LEA did not give a correct derivation of the estimated fusion, which may lead to grave degradation of its estimation
performance.

(2) Internal ellipsoidal approximation. For the purpose of closing gaps in [48,49] approximated the intersection
region of the covariance matrices with the aid of an internal ellipsoidal approximation (IEA) [50] method, where an
iterative algorithm was employed to determine the largest ellipsoid. However, as commented in [51], the iterative
nature of this approach may limit its applicability.

(3) Ellipsoidal intersection [51]. Different from the way in which IEA [49] parameterizes the fused estimates, a
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novel parametrization method proposed in [51], labeled as Ellipsoidal intersection, was proposed to parameterize the
correlations, which was conducted a priori to the fusion. However, as pointed out in [3], a drawback of this method is
that the obtained covariances underestimate the actual estimation error for certain cross-covariance matrices, thereby
the acquired estimates might not be consistent. Also, the assumption about the common prior estimate seems not to
be easily satisfied in reality [52].

(4) Inverse covariance intersection [53,54]. Based on the idea to subtract a bound on the maximum possible
common information, a new fusion method, i.e., inverse covariance intersection, was developed in [53]. As it can be
seen in [53], such a fusion method constituted an optimal way to treat unknown common information. Noack et al.
[54] further showed that same fusion rules can be also applied far beyond unknown common information, for exam-
ple, the problem of common process noise.

(5) Analytic center covariance intersection [39]. Due to the fact that, the minimization criteria of CI mainly
focus on the uncertainty of the estimate, rather than the values of the estimates &', thereby, the optimal weight ' is
independent of the values of &, which may lead to certain disadvantages. To improve the accuracy, a set-theoretic
criterion [55], was proposed to find the analytic center [39] X4 (or the Chebyshev center [6]) of the solution set S,
i.e. (Here, ¢(x) is the potential function of S, fp (fac, &) = 1—d% (2ac, &) with the squared Mahalanobis distance

&, (3,5) = (fac = %) (P (fac - £).),
Rac = argmax ¢(x)

o AL fe (ac. &) ®)
S [T e for (Racs )

where both the uncertainty and value of estimates are taken into consideration [39].

(6) Optimal fusion. In case of fusing two measurements with unknown cross-covariances, [56] proposed an
optimal fusion method based on the BC formula when both measurements are scalars or their covariance matrices are
diagonal. This requirement on measurements was relaxed in [57] to the vector setting by utilizing a game-theoretic

approach. As a result, an optimal estimate was obtained in the minimax sense. Note that, the aforementioned results
are only limited to two measurements, which is rather restrictive and of limited applications. Recently, a generic opti-
mal data fusion algorithm, namely, numerical projected subgradient optimal fusion, in terms of minimum mean
square error (MSE), was developed in [58, Theorem 8] with the capacity of dealing with general number of measure-
ments with any dimension and handling an arbitrary degree of mixture of known and unknown cross-covariances.

3.3.2. Faster CI

Another significant drawback of the Cl-like algorithms is the increasing computational intensity. It should be
noticed the optimization (7) is indeed a nonlinear optimization problem with constraints in Euclidean space R”. As
the number of to-be-fused information sources grows, the computation itself quickly becomes intractable [41]. The
potential reasons for this fact are, but not limited to: (1) the on-line calculations of the fusion weights involve the real-
time posteriors of local measurements, but they are often computationally troublesome [26]; (2) when Shannon
entropy measure is adopted for more than two inputs, the resulting computational complexity replies on the nature of
the PDFs, which may lead to a computationally demanding multi-dimensional optimization problem that contains
many local minima [27,59]. Hence, there have been pressing needs to design fast CI algorithms to circumvent this
issue. It is no wonder that a number of results, both on-line and off-line ways, have been reported in this spirit.

(1) On-line fast CI.

(2) Sub-optimal non-iterative algorithm. Instead of the nonlinear optimization (7), [36] conceived a sub-optimal
non-iterative method such that the fusion weights can be given directly via Equation (9) without optimization, i.e.,

<;)
i (P
w > ﬁ . ©)
This measure was further adopted in [16,60] for designing a diffusion Kalman filtering scheme, and [6] for a Kull-
back-Leibler distance (KLD) perspective, that is,

_ DM, phIS D', p*)
S T D(pi L, pHILS D(ps, p+1)

(10)

respectively, where D(p'(+), p/(+)) is the KLD from the local probability density functions p'(-) to p/(-). Later, as
compared to Equation (9), a more accurate version was developed in [61] where the weights choosing from
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~ det(3Y (P +det((P)™") —det(3 1, (P) ™ = (P)™)
@ T N (P + 0 [det((P) ) — det(S L, (P — (P ]

(11)

Following the similar paradigm as Equation (11), [27,59] developed a fast Chemoff fusion version of which the
weights are chosen by

1 — e(HNJHN\: + e(HNJHr

o' (12)

"N+ SV [t et ]

where Hy, H; and Hy,; mean the Shannon Entropies for the Bayesian fusion of all N inputs, the i-th input, and all
except the i-th input, respectively.

(b) Sequential covariance intersection (SCI) [41]. In a sequential manner, [41] transformed the original N-
dimensional nonlinear optimization problem Equation (7) into N — 1 dimensional ones which can be solved effec-
tively via Fibonacci method or gold section method [41]. However, SCI is order sensitive as different fusion results
come from different one-dimensional fusion orders. To overcome this disadvantage, an order insensitive SCI fusion
algorithm has been developed in [62] with the sub-optimal non-iterative weights Equation (9).

(c) Closed-form optimization [63]. Rather than approximating the optimal weights, [63] gave the exactly opti-
mal weights for the fused covariance matrices of low dimensions with the aid of the proposed closed-form optimiza-
tion, where the original nonlinear optimization problem was reduced to the polynomial root-finding problem.

(d) Ellipsoidal intersection (EI) [51]. Another exact solution of multi-sensor fusion under unknown correlations
is given by EI, where the attained algebraic fusion formulas are computationally accessible.

(2) Off-line fast CI.

Recently, some off-line weights such as Maximum-degree weights and Metropolis weights [64,65] are also
used in Cl-based distributed filtering schemes such that the computational burden are reduced significantly. The
interest applications of this type can be found in [24,34,66—70]. Another type of off-line fast CI was proposed [71],
where the fusion weights were calculated via off-line optimization of the observability Gramian.

4. Fusion under Partially Unknown Correlations

With more information about UCs, it is desirable to design better fusion algorithms than the classic CI.
Although reasons for UCs may vary, in practice, the following partial information about unknowns can be acquired:

(1) Known independent error components. From the algorithm point of view, CI conservatively assumes that no
estimate provides statistically independent information, while the Kalman filter assumes that every estimate provides
statistically independent information [72]. Therefore, an ideal data fusion will inevitably involve with some known
independent information. In this regard, an extended CI framework called split CI was proposed in [72] to incorpo-
rate the known independent error components with consistent fused means and error covariances. In this setting, let

N A . . . 1., - 1 ., -
#'=3%"+3" and #* = ®+ 2, with the corresponding error covariances P; = —P' + P! and P? = I—P2 + P
w

where %! and % are correlated to an unknown degree, and %' and x? are independent of each other completely. It

Lo -\ 1 o 5\
(—P1+P1> +(—P2+P2)
w l-w

1o -\ 1, 5\
)?,-:Pf{<P1+P1) fcl+(—P2+P2) fcz}
’ ’ w w

Split CI plays a balance between SCC and CI. If every estimate is statistically independent, it automatically returns to

gives the following Split CI equations:

Pr=[(PY '+ =

(13)

SCC. If there are no statistically independent estimates, it reduces to CL

(2) Unknown but constrained cross-correlation. If the correlation between the considered random vectors is
unconstrained, then a covariance bound exists but with certain conservatism. Less conservative results can be
obtained if more information is available. For example, there exists a correlation coefficient bound r,,,,(one choice of
this correlation coefficient bound is given in [10], i.€., Fmax = Omax ((Pii)‘lPij ((P-fj)T)_1> where 0, denotes the
maximum singular value) such that the maximum absolute of correlation coefficient satisfies|r|<rp.x <1. Then a
constraint for this cross covariances can be imposed as [73],

PH (P PI<rL, PY. (14)
Reece and Roberts generalized (14) to include a so-called "centred" matrix D%, i.e.,
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P [P ] <1 -

In this regard, [74] developed a bounded covariance inflation fusion approach with the inflated covariance
matrix. [9,10] interpreted Equation (14) as a Schur complement condition [75] for positive definiteness, and then the
corresponding optimal fusion problems were translated into a Semi-Definite Programming (SDP) problem in terms of
minimizing the MSE in the worst case [9], and minimizing the trace of the upper limit of the fused error covariance
[10], respectively.

(3) Approximation of unknown covariance. How to exploit correlation coefficients to obtain a cross-covariance
matrix without decoupling the degrees of freedom? Kaplan et al. [76] came up an idea to use a single correlation
coefficient » to express the cross-covariance of estimation errors from sensors i and j as

PijeriCjT, (16)

where r is the correlation coefficient between two random vectors, and C' is the Cholesky decomposition satisfying
Pi=CiC'" . In this paradigm, the BC fusion rule [4] can be applied directly by replacing pi/ with rC'Ci" [33].

(4) Norm-bounded uncertainty. Qu et al. [77] explored another way to describe the partial information of
unknown correlations where the uncertainty in cross-covariance was formulated in terms of additive norm-bounded
terms as follows

PV = B+ APV, HAPZHgaU (17)

where || - || is the spectral norm or Frobenius norm of matrix, Pff is the nominal matrix of P;'(j , and «;; represents the
bound of disturbance in I~’f . Then, a linear estimation fusion was developed with the weighting matrix optimized via
minimizing the worst-case mean-squared error in the region of uncertainty.

(5) Only one element of cross-correlation matrix is unknown [78]. Suppose P/ is the cross-covariance matrix of
the estimation errors, and all but one individual element of P/ are known. For this type of the unknown, a partitioned
covariance intersection fusion algorithm was designed in [79]. Later, this method was recently improved in [78]
where its optimality, and its relation with the fully unknown case were revealed.

5. Distributed Fusion under Unknown Correlations

Recently, a series of developments have been made in the area of distributed sensor networks (DSN) where the
unknown correlation is more severe in networks with potential "network looping" [17] phenomenon. As a result, CI
has been constantly adopted as a reliable fusion strategy over DSN. However, in a typical DSN, there is no fusion
center, and each sensor node only has a limited knowledge from its neighbors. Hence, CI has to be adapted to
account for those facts. The following is a general framework of the distributed covariance intersection (DCI) by
extending Equations (5) and (6) to the distributed network setting.

Given a distributed sensor network G = (N,E) where N and & are the set of sensor nodes, and connections
between them, respectively. N; denotes node i's neighborhood that include node i. For Vi € N, it has

P =) m/®)
JEN;
R, =Py Pl
JEN;

(18)

with weights ﬂ;;fj = argmingigg, tr{P}, ), satisfying >~ 5 ﬂﬁ;‘j =1

The idea can be traced back to [28] where the purpose of DCI is to provide a fault-tolerant solution to address
the inconsistent issues arising from arbitrary, dynamic, distributed network of information processing nodes. Renewed
interests of DCI have been focused on its communication constraints, and stability analysis. [80] considered the com-
munication network between the measures and the local fusion center subject to packet dropouts, varying delays, and
finite bandwidth; while [81] studied the communication constraint arising from the reduced communication band-
width in transmitting the local information to its neighbors. Consequently, a novel event-triggered communication
strategy was developed. Chang et al. [82] further considered the case that the observation update and the fusion
update are based on different topology. Note that all the aforementioned results are accompanied by the correspond-
ing stability analyses, and hence are limited to the time-invariant systems. A time-varying counterpart of stability
analysis can be found in [83] which extended the result in [84]. Its generalization has been further discussed in [85]
with the consideration of varying communication topology. In terms of the aforementioned stability results, most of
them require the system matrix to be nonsingular, and such a requirement is later relaxed in [86].

Based on DCI, with the adoption of consensus and diffusion strategies, the consensus-based CI and diffusion

7



1JNDI, 2023, 2(2), 100003. https:/doi.org/10.53941/ijndi0201003

filtering methods are also attracting a significant amount of attention, which will be discussed in details in the follow-
ing subsections.

5.1. Consensus-Based Covariance Intersection

By combining DCI with the consensus strategy [11,12,87], the consensus-based CI (CCI) is constructed. The
general framework of the CCl is given as follows [24,88].
Given a distributed sensor network G = (N, &), for each node i € NV, denoting by Q; , and g , the information

matrix and information vector at time instant & and fusion step £ (£ =0,1,---,L— 1), respectively, with initialization
Qo= (PY™", gy = (P})' &, it has
Qe =D 70 dn =Y midl, 19)
JEN; JjeN,

and weights nj{’[ = argming o 1y P} satisfying 3 ey, ﬂ}c@ =1, and x>0 is a given sufficiently small
scalar.

The idea of CCI first appeared in [89] for a distributed state estimation problem. Later, a mathematically rigor-
ous treatment of it was given in [24], where CCI is interpreted as a consensus on PDFs in the KLA sense with
Metropolis weights. This is also called consensus on information [24,34]. From an algorithm point of view, CCI sim-
ply weightedly averages on local information matrices and information vectors in a distributed way. However, com-
pared with the existing consensus filtering methods such as consensus on estimates (The terms consensus on esti-
mates, consensus on measurements, and consensus on information are first coined in [34].) [90-92] (including H.,
consensus filtering [93—95]), and consensus on measurements [34,92,96,97], CCI has the following advantages: (1)
only limited few consensus iterations per timestep are needed such that it can reduce the demands of communication
resources significantly, (2) it can guarantee the convergence of the filter at any iteration steps [66]; and (3) it can
automatically guarantee the consistency of the filter. Following the same consensus philosophy, [98] proposed a con-
sensus-based multiple-model Bayesian filter for distributedly tracking a maneuvering target. This consensus method
was later utilized in [34,67] as an indispensable part to design a hybrid consensus filter method. More recently, [68]
and [99] investigated the filtering performance of the CCI with the unreliable communication links that are subject to
random link failures, and transmission delays, respectively, while [88] studied the consensus properties, detectability,
and stability of CCI with the original CI weights in the time-varying system setting.

5.2. Diffusion-Based Covariance Intersection

Differently, by embedding the diffusion strategy [100,101] into DCI, a diffusion-based covariance intersection
(DiffCI) fusion can be developed. The strategy of the DiffCI is summarized as follows [16].
Given a distributed sensor network G = (N, &), for each node i € N, it has

Py =) mieh,

& (20)
Bp= ZD IR,
JEN;
where the diffusion matrix D}’ is calculated by
DY =n/Pi f(P,ﬁ) ! 21

with weights 77;’ = argmin,,. sego, 1 Py ¢, satisfying 37 e, /=1

The diffusion strategy was first proposed in [100]. The main idea is to diffuse information among neighboring
nodes via a convex combination so that the estimate at each node is a function of both its temporal data as well as the
spatial data across the neighbors [100]. This strategy was applied to [16] a setting of DCI, where the diffusion matrix
is obtained based on the fast CI fusion in [36]. Different from the CCI, DiffCI does not require running consensus
iterations between information, and is particularly suitable for recursive minimization of cost functions. Recently, [60]
extended the DiffCI algorithm to the Markov jump systems.

5.3. Generalized Covariance Intersection-Based Multi-Object Tracking

An emerging area of applications of CI is the multi-object tracking that is a real-time estimation of an unknown
yet varying number of objects and their individual trajectories from sensor data [17]. Recent studies have witnessed
its development in the distributed settings. However, given that the estimates in different nodes are normally not
independent from each other, the practical distributed fusion solution thus falls into suboptimal algorithms such as CI
[102]. Following this spirit, Mahler applied the following generalized covariance intersection (GCI) fusion rule [38].
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Given two local multi-object posteriors, f, (X|Z0) and f; (Y|Z)), that are conditioned on measurement set
sequences, Z{ and Z;, from two different sensor suites. GCI fuses fy (X|Z{) and f; (Y|Z}), into an updated multi-
object posterior, f,, (X|Z,Z}) , by

fo(X12)" £ (x17))*
[ 51z fi (viz}) 6Y

fo (X120, 2;) = (22)

where w is an integer and 0<Sw<< 1.

From the algorithm point of view, GCI is nothing but a mutil-target counterpart of Chernoff fusion. Choices of
fusion weights in Equation (22) were explored in [102] based on maximization or minimization of cost measures, or
equalizing divergence metrics. Indeed, f(X) in Equation (22) is a real-valued function of a random finite set (RFS) X.
The evaluation of | f(X)5X is a set integral that integrates over all joint target-spaces, which is computationally pro-
hibitive, thereby the first-order moment statistic is used, i.e., the probability hypothesis density (PHD) is adopted for
approximation [ 103]. The general framework of GCI-based multi-object tracking can be described as follows [104].

Assume that the target set is modelled as an i.i.d. cluster process, the multi-object densities of agent i to be fused
take the form

Feo =X paxp[ s’ (23)

xeX

where (p'(n), s'(x)) is the cardinalized PHD. It is shown GCI fusion yields [103]

foer 0 =1X1 PAXD [ 24)

xeX

where

e [#00]™
S Tjen: [7(01°7 dx

[Tjen [pj(")] B {IHjeN' [Sj(x)] i dx}n
> om0 Ljen: [Pj(m)] o {IHjEN' [s7(x)]* dx}m

The algorithms to implement the distributed multi-object tracking can be found in [45]. To save communica-
tion and computation in the distributed environment, [26] proposed a more efficient fusion mechanism where, only
the significant Gaussian components of local PHD are shared among neighbors and fused. Multi-Bernoulli (MB) fil-
ter is another efficient multi-object tracking algorithm as it directly propagates the multi-object distribution instead of
its moments [69]. In light of this merit, a distributed multi-object tracking algorithm via using MB filter was pro-
posed in [69]. Note that, the aforementioned results involve multi-object densities with the RFS nature which is diffi-
cult to provide the object's unique identity. To alleviate this problem, a labeled RFS was introduced in [105], and [17]
proposed analytical expressions for the fusion of labeled MB and marginalized §-generalized labeled MB [105,
Equation (39)] via KLA.

5'(x)

(25)

p'(n)=

6. Practical Applications

UCs ubiquitously exist in practice. With the advances of techniques dealing with UCs during the past several
decades, a plethora of interesting applications have been reported. In this section, we reviewed these areas where UCs
have been successfully dealt with.

(1) Vehicle localization [106,107]. The unknown temporal correlation in absolute positioning measurements
(APMs) is dealt with using Split Covariance Intersection Filter (spilt CIF). Specific application examples also illus-
trate the advantages of spilt CIF and its benefit in vehicle positioning.

(2) Image fusion [108,109]. The image fusion problem can be translated into an estimation problem. With the
aid of ClI rules, novel image fusion approaches were developed in [108,109] to maintain both the spectral informa-
tion of the multi-spectral image and the high spatial resolution information of the panchromatic image in a more
effective way.

(3) Simultaneous localization and mapping (SLAM). Sensor fusion plays an essential role in solving the well-
known SLAM problems (c.f. [110]). One of the greatest obstacles of using SLAM in a real-world environment is the
need to maintain the full correlation structure between the vehicle and all of the landmark estimates. This structure is
computationally expensive to maintain, and is not robust to linearization errors [35]. To circumvent this difficulty, a
Cl-based SLAM was developed in [35].

(4) Environmental monitoring [111]. Real-time environmental monitoring of pollutant dispersion due to chemi-
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cal leaks is an essential task in disaster prevention. Hence, there is a great need to constantly estimate the characteris-
tics of interest to evaluate the current hazardous level [111]. For example, CI was applied to the estimation of the
concentration of the pollutants based on the measurements from a dynamically cooperating sensor vehicles [111].

7. Conclusion and Future Remarks

This overview gives a roadmap of the development and advances in multi-sensor fusion with unknown correla-
tions (UCs). We start with the root causes of UCs. Next, the development of various methods to deal with UCs has
been reviewed. Based on the nature of UCs, these approaches are effectively classified into two groups, namely,
fusion under fully UCs and fusion under partially UCs. In particular, in the first group, the CI fusion rule has been
reviewed rigorously in terms of its generalization, improvements, and applications. Furthermore, we notice that there
has been an intense study on fusion with UCs in a distributed way. We have categorized and reviewed these results in
terms of three groups, i.e., consensus-based CI, diffusion-based CI, and GCI-based multi-object tracking.

To conclude this overview, a glimpse of future perspectives are outlined in the following that may provide some
research ideas in the area of information fusion under UCs.

(1) Other types of partially unknown correlations (PUCs). In Section 4, we summarized several typical types of
PUCs, and reviewed the fusion methods in dealing with them. However, according to the cross-correlations [112,
Equation (26)]:

P/ = (=K. H)F Pl FL + Q)T - K[H)T, (26)

We believe that there are other types of PUCs remaining to be studied. From Equation (26), it is obvious that the
unknown sources can come from the uncertain system matrices H, and F; [113], uncertain-covariance noise Q
[114], or/and uncertain Kalman gains K} (may be caused by unknown observation covariance [115]), which may be
tackled by incorporating the existing techniques such as robust filtering [116], extended Kalman filtering [117], non-
fragile filtering [118], and H., filtering [119], etc.

(2) Explicit characterization of UCs. Owing to its complex unknown nature, when UCs appear, most of the
results simply label the error cross-covariance P} as unknown without mentioning the specific structures, which will
inevitably lead to a certain degree of conservatism in the final fusion results [8]. It is worth noting that [51] made a
first few attempts by providing an explicit characterization in terms of representation PT~!pJ/, where T is an
unknown mutual covariance with its algebraic expression determined by an optimization solution. However, this
method may come with the inconsistent estimates [3] and the hardly satisfied common prior estimate issues [52].
Therefore, it is meaningful to continue to improve the existing method by overcoming these weak points or develop
new explicit characterization of UCs in the future.

(3) Two-stage fusion strategy. For the efficiency consideration, the implementation of Cl-like fusion may be
divided into two stages: off-line stage and on-line stage. In this setting, the computation burden caused by weight
optimization can be shifted to the off-line design stage. Next, the optimized weighting parameters are adopted into the
online implementation of fusion algorithms. Following this philosophy, [71] used the observability Grammian to
search for the desired weights during the off-line stage, and provided the expectation that optimization methods such
as linear matrix inequalities [75] may be helpful to find more suitable weights in varied situations.

(4) Robust fusion under unknown correlations. A prerequisite of CI is that estimates to be fused are consistent
so as to guarantee consistency of data fusion. However, in practice, a different situation may arise when estimates
from different nodes are determined to be mutually inconsistent [28]. To handle this problem, [28] proposed a
covariance union method using a Mahalanobis distance to detect the statistical difference between estimates. If the
threshold for the Mahalanobis distance is crossed, the estimates are deemed incoherent. Furthermore, [6] introduced
an adaptive parameter that can be used to robustly fuse estimates with various mixtures of incoherency. However,
determining this threshold is not straightforward in general. The multivariate statistical monitoring methods [120]
may provide new insights into finding more appropriate thresholds.

(5) Stability issues of fusion under unknown correlations. Recently, there has been a renewed activity in the
study of the stability issues of fusion under unknown correlations. To be more specific, the corresponding observ-
ability or detectability issues with following conditions have been reported, i.e., partial local uniform observability
[16], minimal nodes uniform observability [121], collective observability [24], global observability [86], collectively
uniform detectability [70], weightedly uniform detectability [97] and jointly uniform observability [71] conditions.
These conditions extend the traditional observability [122,123] or detectability [124,125] conditions such that they are
more suitable in a sensor fusion setting, where the system can be unobservable or undetectable from a standalone
node point of view. As a result, it is interesting to find out how those observability or detectability conditions can be
utilized to enhance the fusion performance.
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