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Abstract: Intelligent manufacturing is facing significant challenges in adapting to the ever-changing
equipment, instrumentation, process and economics. Such a trend together with the pressure to reliably
control and contain production costs means that frequent adjusting decisions are required to adapt to
incessant volatility imposed on manufacturing systems. Under this circumstance, cost-effective and qual-
ity-guaranteed manufacturing strategies would be the most logical route to reducing production costs. In
this paper, a novel dynamical cost prediction and control (CPC) model is proposed to support collective
decision-making in intelligent manufacturing, where the model output is the real-time prediction of pos-
sible manufacturing costs, while the inputs are generic manufacturing key performance indicators cover-
ing inventory, product quality, production efficiency, resource utilisation and environmental impact. This
proposed CPC model distinguishes itself from existing ones for its capability to translate manufacturing
data (at both the physical level and operation management level) into financial metrics that contribute to
forming a common language between engineering, financial and administrative departments of an enter-
prise. The case study about the assembly line of optoelectronic devices demonstrates that, although dif-
ferent enterprise departments have different priorities, our CPC model helps them to achieve certain con-
sensus on intended production that finally creates satisfactory profitability for the company at controlled
manufacturing costs.
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1. Introduction

Intelligent manufacturing is a highly evolving and competitive industrial field, and a prerequisite to keep this
evolvement and competitiveness is to reliably control the capital and operational expenditure while significantly
reduce the final production cost [1-5]. To fulfill this goal, prediction and control of manufacturing costs becomes a
major concern of both stakeholders and decision-makers, and once such prediction is obtained, business decisions and
operation processes could be fully evaluated and further improved [6—10]. Generally, cost prediction and control
(CPC) are vital in two aspects: 1) accurate CPC assists decision-makers in meeting business objectives such as cus-
tomer satisfaction, waste reduction, and profit maximization; and 2) predicted costs can be used as manufacturing
metrics to dissolve often conflicting objectives such as delivery time, production flow, energy efficiency and produc-
tion quality so as to achieve balanced manufacture. This gives rise to extraordinary enthusiasm in formulating vari-
ous CPC approaches whose focus is the appropriate translation of management data along with operation data into
certain financial cost models to support timely yet economic decision-making of a manufacturing enterprise, see e.g.
references [11—14].

Basically, even in the most mature and advanced manufacturing realms (e.g. optoelectronics), it is still a signifi-
cant challenge to conduct real-time and non-stop CPC due to the colossal amount of data acquisition required by the
cost analysis of every element with respect to the manufacturing process [15—18]. Moreover, most CPC approaches
(e.g. the well-known activity-based CPC approach) carry out data actualization via a labor-intensive, case-based and
one-off way, which are inappropriate for highly evolving production plans seeking for real-time adaptation [19—21].
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In this paper, we intend to fill such a gap by building a dynamical CPC model capable of adapting itself to such pos-
sible variations of production plans. This is made possible via making full use of the capabilities (owned by the
industrial internet of things) with respect to real-time tracking and tracing of manufacturing states, e.g. machine and
product states.

As decision-making under a complex manufacturing environment constitutes a major concern to the manage-
ment department [22—24], we are also motivated to endow the established CPC model with the ability to support the
decision-making process, where the key is to reach a balance between key performance parameters (KPIs), e.g. the
inventory, productivity, product quality, energy efficiency and environmental impact, of the manufacturing processes
[25, 26]. Once the balance is reached, we are able to boost productivity, product quality, energy efficiency, etc. and
alleviate inventory and environmental impact through the reduction of manufacturing defects and wastes.

1.1. Literature Review

Manufacturing-system-oriented CPC modeling is the integration of engineering principles, scientific theories
and commercial practices for predicting the cost of manufacturing processes. Such kind of cost modeling is widely
witnessed in a great variety of areas such as vehicle production, mechanical engineering, semiconductor manufacture
and optoelectronic manufacture, see e.g. [27—30]. Basically, CPC techniques can be divided into qualitative and
quantitative methods, where the former consists of intuitive and analogical CPC approaches, while the latter contains
parametric and analytical approaches. In the intuitive CPC approach, past experience and expert knowledge are sys-
temically leveraged to build a combination of rules and decisions to form a cost function with typical examples like
the decision support systems (DSS), and case-based, rule-based, expert-based and fuzzy logic-based methodologies,
see [31—33] and the references therein. The analogical CPC approach builds itself on similarity analysis that com-
pares new products with old products of known costs in order to predict the costs of new products [34—36], while the
parametric CPC approach relies on the mathematical/statistical relationship between product costs and associate
parameters [37—39]. A noteworthy point is that in the analytical CPC approach, all costs of the material, labor, infras-
tructure, etc. are required to be added up to generate the final production costs.

To be more specific, following the idea of intuitive CPC, a knowledge-based intelligent cost model has been
built in [30] to estimate the manufacturing cost at the conceptual design stage, where both material cost and opera-
tion costs (of machines) have been considered. Using the analogical CPC approach, a novel cost model has been
given in [40] to estimate the operational machining costs of the microelectronic discharge. However, in such a model,
the variation of workpiece/electrode parameters would lead to the change of machining time, limiting its wide appli-
cations to broader industrial scenarios. Unlike the analogical CPC approach, the parametric CPC approach requires
past/historical data, and is more suitable to be applied to the early design stage without any prior knowledge about
manufacturing plans [41]. As one of the most famous analytical CPC approaches, the activity-based costing (ABC)
methodology has been developed in [42] to address the increasing share problem caused by the indirect fixed costs
(which have significant roles in cost models of manufactured products). Note that the ABC method is, in fact, a cost-
ing model that assigns resources/costs (demanded by each production activity) to all services and products at every
stage of production, delivery and marketing. Consequently, the aim of ABC is to measure and price out all activity
resources together with services for customers. Unfortunately, although the ABC method is of high CPC accuracy, it
can only be implemented after the completion of production, which unavoidably fails to satisfy the demand of real-
time manufacture. For the latest CPC development, interested readers are referred to [43—46].

1.2. Statement of Contributions

In this article, we consider the problem of real-time CPC in intelligent manufacture which is a challenging
problem that has been rarely investigated in the literature. The aim is to translate manufacturing KPIs into a universal
and singular metric. We focus on a general CPC problem that features a systematic yet easy-to-deploy cost frame-
work and addresses shortcomings of traditional detail-oriented CPC methods. Our study leads to the following con-
tributions. 1) A novel CPC is established that translates sustainability initiatives and production strategies into real
financial costs, therefore enabling operation managers/engineers to communicate with high-level decision-makers
about the production process. 2) An elaborate selection strategy is designed for a series of KPIs that represent the
manufacturing performance with the help of industrial partners (from the optoelectronics field) and subsequently,
such KPIs are adopted as the inputs to the established CPC model. 3) A model validation process is conducted (at
plants of our partners) that verifies at the shop floor, and production costs can be instantaneously reduced by tactical
optimization, giving rise to high sustainability; and at the management level, proper determination of manufacturing
parameters dramatically reduces the product defects, material wastes, time consumption, gas emission and energy
overhead.

1.3. Organization
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The remainder of this article is organized as follows. In Section 2, the CPC problem of intelligent manufacture
is formulated. In Section 3, the KPI-based solution is elegantly explored with its contribution to the final production
cost clearly elaborated. In Section 4, the case study on a laser device company is fully carried out whose final pro-
duction cost is predicted using the proposed CPC model, where a detailed comparison is provided between the pre-
dicted cost and the real cost (data given by the financial department of the partner company) to demonstrate the
applicability of the proposed CPC model. Section 5 supplies a few concluding remarks on the proposed CPC model-
ing method.

2. CPC Problem Formulation

In manufacturing operations, KPIs can be defined as a group of metrics that demonstrate how efficiently a com-
pany achieves its operational performance [47, 48]. KPIs are sometimes referred to as values which can be compared
with internal or external targets to give certain indications of the operational performance. Hundreds of KPIs are fre-
quently used in manufacturing industries ranging from the automobile industry to the construction industry. For
instance, the emission, waste and resource utilisation (RU) in automotive fields; the quality, delivery, cost and flexi-
bility in financial fields; the suppliers and employees in social fields; and the construction time and speed, time varia-
tion, quality, functionality, unit cost and user satisfaction in construction fields [49—51]. To sum up, each type of
industry has its own indicators depending on the final business objectives.

Quality and productivity, as the crucial factors of manufacturing sustainability, are always contradicted with
each other [52, 53]. The current CPC methodologies aim to mitigate this conflict by providing a cost model allowing
manufacturers to appropriately opt manufacturing parameters so as to maintain the productivity at certain acceptable
level, meanwhile capable of implementing zero-defect manufacture. Here, we aim to build a novel dynamical cost
model to support collective decision-making in intelligent manufacturing, where the model output is the real-time
prediction of possible manufacturing costs, while the inputs are five generic manufacturing KPIs.

Normally, the number of KPIs with respect to certain manufacturing environment is dependent on the business
size, complexity as well as enterprise principles and priorities [54]. As suggested by our case study partner, we
choose five KPIs (i.e. inventory, product quality, production efficiency, RU and environmental impact) as our focused
parameters to demonstrate how effectively and efficiently the company operates. As a matter of fact, the function of
the cost model is to translate the gain of each KPI into certain financial cost (i.e. the monetary value). In other words,
given the desired quality and quantity of the order, the formulated model is able to output the final production cost.

Figure 1 illustrates the prediction flowchart of how such a cost model can be used to build a bridge between the
newly arrived customer order and the resultant production cost. To be specific, when a new customer order arrives at
the manufacturing factory, the production planner employs an underlying cost model to identify the most suitable
KPIs as well as the related manufacturing parameters (about this specific customer order) that are capable of provid-
ing both low defect rate and high productivity of the overall manufacturing process.
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Figure 1. Cost prediction flowchart.

Notice that it is not a one-shot process to calculate the final product cost as the calculation consists of several
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steps associated with several computation formulas about elaborately selected KPIs. Inspired by [28], the CPC model
proposed in this paper can be established as follows:

P=C0+CR+Cv+CE (1)

where P is the final production cost; Cy is the operational cost which includes salaries of operators, machines uti-
lization fees, maintenance and depreciation fees, set up fees and energy consumption fees; Cr represents the raw
material cost; Cy defines the inventory cost; and Cr denotes the environmental impact cost. The four cost terms are
analysed/calculated according to the previously selected five KPIs and subsequently, summed up to generate the final
production cost.

In what follows, let us study how each KPI contributes to the above four cost terms as well as the final produc-
tion cost.

3. KPI-Based Solution

In this section, we will explore the relationships between the aforementioned four cost terms, the five KPIs (i.e.
inventory, product quality, production efficiency, RU and environmental impact) and a series of manufacturing
parameters in order to determine C,, Cg, Cy and Cg. With these four cost terms in hand, we will be able to acquire
the output of model (1) which is the most important factor to both customer and production manager.

3.1. Product Quality Contribution

Product quality serves as a key factor in the manufacturing process, and exerts direct influence on the final pro-
duction cost. Moreover, product quality could also affect customer-manufacturer relationships such as the amount of
orders, the evaluation of products, and the loyalty to manufacturers. Basically, there are numerous factors affecting
product quality. For example, in cases of equipment faults, machine breakdowns and unqualified products, produc-
tion managers and engineers have to stop the production process to carry out certain maintenance, called the routine
maintenance frequency (RMF), in order to guarantee product quality. Basically, a low (high) RMF often indicates
few (many) equipment/machine breakdowns and therefore, good (bad) production quality. More specifically, in the
production of laser devices, the quality of the laser device deteriorates as the RMF of the assembly machines is out of
certain range. As such, a trade-off between the product quality and RMF must be reached according to each separate
order and specification that are set by customers.

Define the RMF (expressed in numbers) by ¢ and the non-defective percentage of the produced devices by ().
Then, the relation between ¢ and () is characterized by the following quadratic relationship:

Q=ap®+bo+c )

where a, b and ¢ are case-based coefficients to be determined. In addition, we categorize defective products into
repairable and non-repairable ones as follows:

D= Qr(1-0), 3)

D=(1-0p)(1-0) S

where Qg denotes the percentage of reparable products; and D and j) represent the repairable and non-repairable
percentages of the defective products, respectively.

3.2. Productivity Contribution

The proposed CPC model in (1) is a function of the RU with respect to the machine/equipment, and the RU
(denoted by x) is a main measurable indicator of productivity. Generally, the RMF p is the average opening/shutting
frequency (required for machine/equipment maintenance per week), and the shift frequency @ (expressed in num-
bers) is the total opening/shutting frequency required for completing the assigned production workload per week. In
this case, the RU can be formulated as follows:

x=1-p/w. %)

Without loss of generality, the cost of machine operation C,, is assumed to be a quadratic function with respect
to x as in many other manufacturing cases, see [55, 56] and the references therein. Note that C,, combines together
the salaries of operators, machines utilization fees, maintenance and depreciation fees, set up fees and energy con-
sumption fees. The detailed calculation formula of C,, is given as follows:

C”:dx2+ex+f (6)
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where d, e, f are cased-based coefficients to be determined by making use of the collected manufacturing data.

3.3. Efficiency Contribution

Production efficiency evaluates the performance level and the capability of the manufacturing system to not
only create qualified products, but also achieve satisfactory operations along with financial performances. Generally,
the lower efficiency a manufacturing system has, the higher cost a manufacturer pays. As such, production efficiency
can serve as a primary index of manufacturing enterprises striving to satisfy highly-changing customer demands and
occupy competitive market shares.

The proposed CPC model characterizes the KPI efficiency in terms of the raw material cost Cg and the opera-
tional cost Co. Denote Cy as the normal material cost and C, as the normal inspection cost. Then, the calculation
formulas of Cr and Cy can be established as follows:

Cr=(+D)Cy, @)

Co=(1+D)C,+(1+D)C ®)

where Cy is constituted by two terms, i.e. the normal material cost Cy, and the additional material cost DCy
required to repair defected products which are reparable; and Cy, is constituted by four terms, i.e. the operational cost
C,, the additional operational cost DC,, required to repair defected products which are reparable, the normal inspec-
tion cost C; required to inspect machine status, and the additional inspection cost DC; required to inspect machine
status when repairing the defective products.

3.4. Environmental Impact Contribution

Environmental impact on manufacturing systems is becoming a major concern as most developing/developed
countries are striving to reach carbon neutrality in the middle of this century. A typical approach to describing the
carbon emission of manufacturing plants is the measurement of the associated energy consumption. However, due to
various environmental rules/terms in different countries, environmental impact may have largely discrepant results on
the final production costs. Such costs should cover the influence from qualified, reworked and unqualified production.

Denote the normal penalty for energy consumption as Pr and the normal penalty for used materials as Py .
Then, the specific environmental impact onto the production cost is given as follows:

Cg={+D)(Pg+Py) Q)

where Cg is the environmental cost, term Pg + P), evaluates the energy consumption and penalty with respect to
both qualified and unqualified products, while term D(Pg + P,,) assesses the energy consumption and penalty with
respect to previously defected but later reworked products.

3.5. Inventory Contribution

The inventory cost represents all overheads linked to material storage (which gradually reduces as raw materi-
als constantly being fed to production lines) and product storage (which gradually reduces as products continuously
being sold out). Although for inventory, the costs of product hold, replenishment along with replacement rely on the
specific storage time, size, value and type of the stored products/materials, we here, for brevity, simply consider the
inventory cost as certain fixed cost per time unit (e.g. a week).

In our industry case, this consideration is reasonable as both the raw material (e.g. the gold line, wafer fan and
optical lens required by laser device production) and the product has a quite long shelf life, indicating that the inven-
tory cost is fixed during the whole production process. Denote Cy as the inventory cost per week, 7, as the order
shipping week, 7, as the order finish week, and 7, as the order starting week. Then, the detailed calculation for-
mula of the inventory cost Cy is given as follows:

Cy=Cyl(tsp—7m)+ (T —Tu)l. (10)

Up till now, we have elaborated the contributions from each KPI to the final production cost in order to deter-
mine the cost terms of the established CPC model (1). Table 1 lists the detailed computation procedure of the CPC
model.
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Table1 Calculation procedure of the proposed CPC model

Step 1: Calculate the non-defective percentage of the produced device by (2).

Step 2: Calculate repairable and non-repairable percentages of defected products by (3)—(4).
Step 3: Calculate the RU by (5).

Step 4: Calculate the cost of machine operation by (6).

Step 5: Calculate the raw material cost by (7).

Step 6: Calculate the operational cost by (8).

Step 7: Calculate the environmental cost by (9).

Step 8: Calculate the inventory cost by (10).

Step 9: Sum up all KPI-based costs to determine the final production cost by (1).

4. Manufacturing Case

The modeling accuracy of the developed CPC model is verified by one real-world manufacturing scenario from
optoelectronic manufacture, i.e. laser module production. In this manufacturing scenario, the RMF is selected as a
controlling parameter accounting for the fact that, the RMF affects both product quality and order completion time
(due date) required by customer satisfaction. It is worthwhile mentioning that the CPC model proposed in this article
is artificially built to be simple in order to avoid requiring too much information from manufacturers, thereby easily

adapting to a wide variety of industrial applications.

4.1. Case Study and Result

The manufacturing of laser modules is a complex and highly precise process that deals with microscale compo-
nents, and any deviation is costly from the planned process and desired product quality. In the laser module assembly
process, routine maintenance of the assembly machine is always required to guarantee zero-defected modules, and the
manufacturing stage consists of a fast axis collimator (FAC), a slow axis collimator (SAC), and mirror and fibre lens
assembly. Defects often occur when a low RMF is deployed, whereas a high RMF gives rise to excessive manufac-
turing costs. In the former case, the product is discarded costing on average 350-620 Euros per laser module, and in
the latter case, the product is reserved yielding several hours’ production delay per day.

The proposed CPC model is tested to identify the optimum RMF via several different products and scenarios.
Three different laser modules (S1-Series, D-Series and S2-Series) are used for the empirical study as well as the cost
modelling of the concerned laser module assembly process. To be more specific, both S1-Series and S2-Series have
10 emitters on each laser module and share the same process flow, while the D-Series has 20 emitters on each laser
module.

Figure 2 presents the relationship between the RMF and product quality rate (QR), and Figures 3 and 4 sketch
the relationship between the cost of machine operation C,, and RU, where values of involved parameters are sup-
plied by engineers and managers from our partner company for each specific manufacturing stage. More specifically,
Figure 2 shows the ratio between the product quality versus RMF. The relationships between the cost of machine
operation C,, and RU are illustrated in Figures 3 and 4, respectively, by the quadratic equation y = 64134x*—
113031x+49842 for S1-Series and S2-Series, and the quadratic equation y = 64233x> — 108785x + 46100 for D-
Series, where x denotes RU, and y denotes the cost of machine operation. It is observed from the production line

that, as the RMF increases, the product quality also climbs.
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Figure 2. Quality rate (QR) vs routine maintenance frequency (RMF) (times/week)
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Figure 3. The cost of machine operation C, vs resource utilisation (RU) (S1-Series and S2-Series).
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Figure 4. The cost of machine operation C, vs resource utilisation (RU) (D-Series).

For S1-Series, S2-Series and D-Series products, Figure 5 depicts the relationships between the RMF and final
product cost. Referring to these figures, it is witnessed that quality control scenarios of all three products demonstrate
the similar pattern of cost trends along which the final product cost reaches the minimum value. On one hand, for all
RMFs, D-Series has the largest product cost, while S1-Series has the smallest product cost. On the other hand, all
product costs decrease as the RMF climbs up before certain point (RMF = 12.5 times/week), and all product quality
descends as the RMF continues to increase after the optimal point (RMF = 12.5 times/week). As a result, the optimal
RMF with respect to the final product quality locates between 12 times/week and 13 times/week.
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Figure 5. Final product cost vs routine maintenance frequency (RMF) for different products.

The relationship between the RMF and defect cost is described in Figure 6 where the defect cost is the summed
cost of all defected modules. We can also observe from the figure that the quality control scenarios of all three prod-
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ucts demonstrate similar patterns of cost trends, where all defect costs reach the minimum value with the optimum
point located at the RMF of 18 times/week. In addition, the curve of D-Series starts from a higher point than that of
S1-Series and S2-Series, despite the fact that all defect costs converge to the same point finally. This is because that,
for a single module, the number of emitters has more significant impact on the defect cost. Additionally, one notes
that the minimum defect cost is guaranteed as follows at each product scenario: for S1-Series, when the RMF is 18
times/week, the minimum defect cost is 6 Euros; for D-Series, when the RMF is 18 times/week, the minimum defect
cost is 9 Euros; and for S2-Series, when the RMF is 18 times/week, the minimum defect cost is 11 Euros. As such,
the minimum cost follows an expected trend which is aligned with the quality curves.

35.00 F
—— D-series
30.00 [N S2-series
%2500 ‘r.""-,,u» —— S1-series
© & “
220.00F N
o) .
21500} ~
10.00 | —
sooL—o L T
7 8 9 10 11 12 13 14 15 16 17 18

RMF
Figure 6. Defect cost vs routine maintenance frequency (RMF) for different products.

Finally, Figure 7 plots the relationship between the RMF and the final production cost (the sum of the produc-
tion cost, material cost, maintenance cost etc.) of three laser modules. It can be easily seen from this figure that all
relationship curves have the variation trends similar to that in Figure 5, which unveils the fact that the final product
cost has a significant contribution to the final production cost. Besides, one plainly observes that products S1-Series
and S2-Series have very similar production costs at any RMF, while the product D-Series has much higher produc-
tion costs than that of both S1-Series and S2-Series. This coincides with the fact that S1-Series and S2-Series are sim-
ilar laser modules, while D-Series is a much more advanced laser module.

30000.00
g 25000.00 |
52000000 | == :
S 15000.00 | e _———
E 10000.00 | —— D-series
£ 500,00 — S2-series
[ ——S1-series
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Figure 7. Final production cost vs routine maintenance frequency (RMF) for different products.

4.2. Result Validation Using Expert Knowledge

According to the availability/accessibility of manufacturing data and information, two validation methods are
conducted to test the designed CPC model, i.e. the direct observation and the discrete event simulation methods. As
the real financial performance from our case study partner is extracted, this validation is dependent on directly com-
paring the financial performances of the partner company with that of the CPC model projection. When the real
financial performance is unavailable, a discrete event simulation of the manufacturing process is developed in Rock-
well's Arena simulation 2018 package, which adopts various random pools to predict competition time and overall
annual costs.

4.2.1. Validation Approach 1: Direct Observation

The shopfloor data along with a direct measurement of product costs is taken from the shopfloor, and com-
pared with the output of the CPC model. Table 2 lists the direct operation and management data from the accoun-
tancy department of the partner company for the same production line, the same assembly machine and the same
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product.

Table2 The direct observation of operation: S1/S2/D-Series

Operation Value Range
QR 99.0 %
RU 90.0 %
Finish time 3 h per module
RMF (times/week) 12
Repairable products 0.1 %
Product selling price 650/780/1400 Euros per module

We first apply the proposed CPC model to find the nearest QR curve fitted to this case, i.e. the RMF-quality-
rate curve in Figure 2 with the RMF being 12. Since the selling prices provided by the financial department (of the
partner company) are, respectively, 650 Euros per S1-Series, 780 Euros per S2-Series and 1400 Euros per D-Series,
we conclude that the predicted costs have deviations of 8.0%, 0.25% and 23%, respectively, from the true prices of
S1-Series and S2-Series. As a result, variations of the projected CPC model have good correlations with the actually
predicted product costs. Moreover, such variations would converge as the CPC model continues to be applied to the
production line of laser modules.

4.2.2. Validation Approach 2: Discrete Event Simulation

The input data used is listed in Table 2 for creating divergent scenarios, and 150 scenarios are created in total
for the discrete event simulation models of S1-Series, S2-Series and D-Series. The discrete event simulation model
characterizes the time required for manufacturing each of these modules in the case that the model reaches its steady
state. Meanwhile, the model shows the utilization of manufacturing resources (e.g. workers, machines and materials)
at each manufacturing stage. The inspection time is also demonstrated with several postproduction actions (like refur-
bishment, recycling and replacement of product parts) also provided.

Table 3 summarizes the average production performance, finish time and RU of 150 laser modules, and Figures 8
and 9 sketch the simulation results on the finish time (the sum of both production and maintenance time) and RU. It
is seen from Figure § that the RMF (12 times/week) and the finish time (332.33 h/150 modules (S1-Series), 331.41
h/150 modules (S2-Series), and 631.45 h/150 modules (D-Series)) fit the RMF-finish-time curve. This verifies that at
the RMF of 12 times/week, the corresponding finish times are 2.33 h/per module for S1-Series and S2-Series, and
4.83 h/per module for D-Series, where the deviations are 11.44% for S1-Series, 6.15% for S2-Series and 10.52% for
D-Series. Casting an eye on Figure 9, it is found that the predicted RU values (with the same RMF) are 0.9981,
0.9487 and 0.9879 for S1-Series, S2-Series and D-Series, respectively. In comparison with the relationship in Figure 2,
there exist deviations of 18.13%, 8,040% and 8.2630% with respect to the RU values of S1-Series, S2-Series and D-
Series, respectively.

Table3 Simulation inputs and constraints for the use case

Parameter Value Range
QR see Figure 2
Mean RU see Figure 3
Shift time 8.0h
Mean finish time per module 2h
Machine setup time 0.5h
Repairability 10%
Electrical cost 0.12 Euros per kW h
Inventory cost 67.0 Euros per day
Machine running cost per hour see Figure 3
Raw materials cost/ S1-, S2- and D-Series 350/530/620 Euros per module
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Figure 8. Discrete event simulation: finish time/per week (150 modules) of S1/S2/D-Series.
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Figure 9. Discrete event simulation: resource utilisation (RU)/per week (150 modules) of S1/S2/D-Series.

5. Conclusion

The challenge of transferring operation data to financial metrics has long haunted the production and financial
departments in intelligent manufacture. To overcome such a challenge, a KPI based CPC model has been designed in
this article that features an explicit relationship between manufacturing parameters and production costs. To be more
specific, the designed CPC model is capable of translating system KPIs (with respect to interested production pro-
cesses) into financial cost functions, meanwhile taking into account miscellaneous production plans, conditions and
strategies emerging throughout the manufacturing life cycle. Furthermore, the CPC model has been built to be data-
driven so as to precisely predict and control production costs in a reliable and real-time way, meanwhile supplying
both customers and manufacturers a user-friendly, case-adaptive and decision-supportive CPC approach. Finally, real-
time and historical production data (from our industrial partner in optoelectronic manufacture) has been utilized to
verify the applicability of the CPC model. In the direct observation and the discrete event simulation, the first itera-
tion of the CPC model in the shopfloor reveals that there is around 11% deviations between the average actual pro-
duction cost and the predicted production cost. More inspirationally, such deviations can be gradually calibrated as
the production system is gradually enriched with real-time manufacturing data. Future research directions include:
1) the establishment of CPC models for different manufacturing cases, e.g. semiconductor manufacture, robot pro-
duction and 3D printing; 2) the evaluation of CPC performances based on specific user requirements, e.g. raw mate-
rial selection, production lifetime and inventory periods.; and 3) the formulation of CPC models with abilities of self-
calibration, self-adaptation and self-updating [57, 58].
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