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Abstract: In this paper, the problem of adaptive output feedback tracking is considered for a class of
nonlinear systems with lower-triangular structures. A novel dynamic gain is introduced to deal with the
unknown growth rate. By coupling the dynamic gain with the observer and the controller, an adaptive
output tracking controller is developed, which can guarantee that all signals of the closed-loop system are
globally bounded. Finally, the effectiveness of the presented control scheme is illustrated by a numerical
example.
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1. Introduction
This paper considers the following nonlinear systems:

Zi=zim+fix), i=1,---,n—1,

Zn =V + fu(2), (1)
Y=21=Yr
where z=(z;,-+,2,)7 €R", vER and y € R are the system state, control input and measured output, respectively.
¥, denotes the time-varying reference signal. f;(-), i = 1,---,n, are uncertain continuous nonlinear functions.

Owing to the incomplete measurability of all states in practical systems, the output feedback control method is
an important and classical control approach in the control community [1-4]. Over the last decades, great efforts have
been made on output feedback control for nonlinear systems [5—7]. Generally speaking, due to the non-separation
principle, the output feedback control of nonlinear systems is difficult and challenging. By means of a sampled-data
reduced-order observer, the problem of global stabilization was addressed in [6] for nonlinear systems. Under a lin-
ear growth condition, the problem of global exponential stabilization in the mean square sense was investigated in [7]
for stochastic nonlinear systems by means of memoryless output feedback. In [8], a dual-domination method was
presented to design an output feedback controller for nonlinear systems with unknown measurement sensitivity. By
utilizing the method of output feedback domination, the considered nonlinear systems in [9] can achieve globally
asymptotical stability. A novel sampled-data control scheme was put forward in [10] via the output feedback
approach for nonlinear uncertain systems with and without designing any state observer. Note that in the above liter-
ature, the nonlinear terms of the studied systems satisfy the linear growth condition. Therefore, a problem naturally
arises that when the restriction imposed on the nonlinear terms is relaxed, how to design an output feedback con-
troller such that all states of the studied system are bounded?

As one of the fundamental control issues, the tracking control problem has drawn extensive attention due to its
wide applications in dual-arm robots, autonomous surface vessels, motor-drive servo systems, and fixed wing
unmanned aerial vehicles. Many excellent results have been reported on dealing with tracking problems of nonlinear
systems [11-15]. In [12], by using a modified high-gain observer, a tracking control scheme was designed for a class
of nonlinear systems subject to unknown parameters. By combining a neural network observer with the adaptive
dynamic programming technique, the optimal tracking control algorithm was developed in [13] for continuous-time
nonlinear systems. A novel formulation of the time-varying tracking control problem of high-order nonlinear systems
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was put forward in [14] with time-varying asymmetric output constraints. The authors of [16] investigated the prob-
lem of global practical output tracking for nonlinear systems with lower-triangular forms. In [17], the problem of
global practical tracking control was addressed by virtue of the dynamic high-gain scaling method.

Inspired by the aforementioned analysis, the objective of this paper is to design a tracking control scheme for
nonlinear systems with unknown growth rates. The main contributions of this paper can be summarized as the fol-
lowing three aspects. 1) The output tracking control problem of nonlinear systems is studied by utilizing the power
integrator technique. 2) Compared with [8—10, 16], the nonlinear systems under consideration are more general as the
included nonlinearities satisfy the homogeneous growth condition and have unknown growth rates. 3) A novel
dynamic gain is designed to handle the unknown growth rate.

2. Preliminaries

We use the following assumptions and lemmas in analysis.
Assumption 1. Foreach i = 1, -- - , n, there exists an unknown constant ¢ > 0 such that

AT
7
i

OISzl ™ +lzal ™ 40041zl ), ©)
where 7=0 and r; is defined by
rn=1rgy=r+7,i=1,--,n 3)

Assumption 2. The reference signal y, and its first-order derivative Yr are bounded.
Remark 1. It is worth noting that many systems may meet Assumption 1 in practice, such as the robotic systems and
chemical systems. Compared with [8-10, 16], the growth condition given in Assumption 1 is weaker. Specially,
when c¢ is a known constant and 7 = 0, the growth condition reduces to the linear growth condition in [8, 9]; and
when c is a known constant, the growth condition is equivalent to the condition given by Assumption 3.1 of [16].
Remark 2. Different from [15], Assumption 2 only requires the boundedness of y, and Yr, and is independent of the
high-order derivatives of y,.
Lemma 1. [18] For c e R and d € R, if iy=1, one has that

() le+d[" <2M7" | Mo+ g"

(i) (Il + 1) < fel ¥ +1d]s <2 (| + |’

If iy =1 and 7y is a ratio of odd integers, one has that

(iii) i —d- ’ <277 [c—d|® ,

(iv) le—df’ <2M~| M —dh|.
Lemma 2. [19] Assume V : R" — R is homogeneous of the degree (HOD) 7 with respect to the dilation A. Then,

we have that
ov
(1) o isHOD 7—r;;

>

(ii) for a constant £y > 0, one has V(x)<{, [lxl[} . Assume that V(x) is positive definite, then for £, > 0, one
has £, |Ix]|} <V (x).

Lemma 3. [18] For any 7=>0, there exist constants a; > 0, i = 1,--- ,n, such that the following system:
ei=ep—aef”, i=1,---,n—1
én — _ane?m (4)
is globally asymptotically stable where 7; is the homogenous weight of e; defined as
rn=1Lrupi=r+7,i=1,-,n (5)
3. Main Results
3.1. Observer Design
For system (1), we design the following observer:
gi=fm+al(y=2)",i=1,,n-1
Zn=vtal"(y—2)™ (6)
where 2= (1, ﬁ;:)T, constants a; >0, i = 1,---,n, are chosen according to [18], and L is a dynamic gain deter-

mined later. Then, a set of scaling-gain changes is introduced as follows:
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X1 =21 = Yr X = -. s Xi = — 3”279i:l""9n9 (7)
under which, system (1) becomes
N .
)'Ci :L)CH_[ —(l— 1)Z.Xi+§0i, 1= 1, ,n— 1,
, L
X =Lu—(n—1)zx,,+<p,,, ®)
fi

Li—l
positive constants ¢; and &, such that

where ¢; = fi =Y., @i = and i =2,---,n. Under the coordinate change (6) and Assumptions 1-2, there exist

Cc finas finay I .rI
‘Pigﬁ(k” ezl )"' L>:‘1
c it PN
<F(|X1 +y T L ) + =
e ey Bl ET
<EL™ (bl 4o+l ) + Liil
<@ L'-® = = % 9
<AL (Il 4+l ) + 75 )
where @ = —.
The above equation together with (6) and (7) leads to
PP . . L
% =L(Ri1 +ai(x — X)) = (i 1)zxi, i=1,-,n-1,
5 . L,
Xn :L(u+a11(xl —xl)”’*‘)—(n—l)zx,,. (10)
Defining the observer error by e; = x; — X;, one has that
. oo L .
¢ =L(ejy —a;e™)—(i— l)zei+90i, i=1,-,n-1,
o L
é, =—La,ée}" —(n—l)ze,,+<p,,. (11)
The following proposition is introduced, which can be obtained from [18] and [20].
Proposition 1. There exists a Lyapunov function V, with an HOD u = 2r,, such that
. e L av, Y%
V.<-L el —— i-D—Se;+ Y — ¢ 12
%] | L%} )5 ;ae,-‘” (12)
where e = (e, ,¢,)".
According to Lemma 2, there is a constant d; > 0 such that
oV, b wey
|?|<d1|€1|" +ee ey ). (13)
By weighted homogeneity, one has
> led " Zgillelly”, (14)
i=1
where g is a positive constant.
Define the following adaptive law:
L= max{L™*(y =y, —2)" - w,0}, L(0) = 1, (15)

where A and w are two positive constants.
It can be deduced from Lemma 1 and (13) that
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n

L . —7; I
—72(1—1) e,<d1 7 D= Dllelty " lelly

i=1

d i
= in(n— D7 lelty

;1+T

\.OoL1 “llella

where py is a positive constant.
By Lemma 1 and Young's inequality, one has that

‘;V or<diei L’ “Z (lelty™ (bl -+l ) ) +Gody Y (||e| " L,.l_, )

i=1 i=1

n n

~ 7= —r; A B PpAas ~
<dei L™ (llelly (ley + &1+ +lei+ 217 ) ) +2odi Y (uenA

i=1 i=1

n
1- A ~
<ci L (llely"™ +ISIKT) + Zod > (ueuA e 1)

i=1

where ¢; > 0 and ¢y > 0 are constants.
By virtue of Young’s inequality, there exists a positive constant ¢o such that

1 —r, (-0 T
Cochllely” iy Seodllelty” (L)
(i=1)(p+7)

81 AT
<2 llelly™ + & L™ 7,

which together with (16) and (17) indicates

LZ led ™+ e L (llelfy + [I51AT)

i=1

- + + _ G- INy+)
+ oL llelfy’ + ||e|“ ’+coZL e

By (14), it can be seen that L=1. Then, (19) becomes

Vo< = Sl L el + I+ 2o Zﬁ
where ¢ = ¢| +py.
3.2. Controller Design

Choose the following Lyapunov function:

X Tnal A*"% oy
V= jA (s %" ) ds,
e
where X1 = V. Its derivative is
. =iy
AT A I
Vi=Lx," (xz +alelz).
It follows from Young's inequality that
pory

wery
Lz 1116’;2 <pLI&|" + S Lleyp,

where o, =(u—r1)a1 ‘(4nr2)~ w/((/1+‘r)v i )
The virtual controller %2 is defined as

=P, Bi=n+py),
where & = £ /" Then, it is not difficult to deduce that
Vi = nLE 5+ S Loy 7+ LEF (8- 13).

Construct the following Lyapunov function:

40f8
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Vo=V +W,,

s i}
. Tpel 5 el

where W, = fh (sT -%" ) "' ds. Then, the time derivative of V; is calculated by

X,

)

o i
Vz =V1 ‘|‘$2"”1 (L(.X3 +a2€13) — Z)Cz)

)

2
0%y

p-ry pry

. w L,
—nLig [ +*L|€ P LE (R =) + €5 <L(X3 +azef)_zxz>

r,
- 4y nxl
P

I ’ 2
H=Ty (% na  s2N\ 0T ox .
-— | (s -x" ds—2—L(, +a,e}),
Tpy1 Y3 0%

2

I+l n+l

5

where & = %," - %, "
By using Young's inequality, it can be deduced that

Moy

LE™ (B —x3) < |§1|w + o Lie|

wmry

LEP aey SpnLI&le + & Lle P,

AT T

where pa) = 1,25 5 3% (u—r) = [(u+7)" and pas =(/1—r2)(12nr3)u%'za5’7/< M(,U"'T)“’Z)-

Similarly, we have that

e Tnel

. , 2 | P
U—ry (2 [ # L\ i 0%, ” . :
e S =Xy ds L(% +ae})
Eo 2 ox :

Tntl 1
*’lwl

/,[ Hpg) A "
= |§z iR — X | I

n+l

M~ r2 - % n+1 el
<EZBo g g 2y rn+uL(|§z—Bl ik

Tns1 r

L e i 81
S kil + pas Lol + 2= Llet ™,
3 12n

KTy Intl

. 1—-
[ R <AL ey |§1| e |§2 -B* fl

'u+1

L
_Zé:

1 e wro g .
<L+ posLlésl e + 2= Lley ',
3 12n

where p,3 and 4 are two positive constants. Then, one can choose the virtual controller 3 as

X5 = —62&", B =n—1+p51 + 020+ P23+ pou,

which guarantees

pory

V< - (n—l)LZ|§,

Jj=1

Suppose that at step Z, there is a Lyapunov function V; and a set of virtual controllers ISP

r, r,
e+l 5 el

=0, s=%" -%

,8] 1((;_-'”41 é:j:)?j', _)'ej " ’j=2’...,l’

such that

Vis- (n—z+1)LZ|§, +4—g1LIe1|"”+§'ﬂ“ L(Ri1 -

Jj=1

where 3; are positive constants.
Finally, at step n, there exists a Lyapunov function

50f8
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(R e\ RS
V,= E s =X ds, (36)
X
=1

such that

v,<- LD& S P T  LE 0. (37)

Then, the controller is constructed as
u= 3. (38)

By weighted homogeneity, it can be inferred that
Dfl | ZgalISIR, (39)

where g, is a positive constant. Then, substituting (38) and (39) into (37) yields
V< —gLlIRINT + & Lle . (40)

Theorem 1. For system (1) satisfying Assumptions 1-2, the problem of global practical tracking can be solved by the
adaptive output feedback controller comprised of (6), (15) and (38), and all signals of the closed-loop system are
bounded.

Proof. Taking into account |e;|<:||e||» and combining (20) and (40), we have

Vs - L (8- aL ) el - Liga — & LR 71, (1)

where V =V, +V, and y; = néy.

From the construction of L, we have L=0 and L(t)=L(0) = 1. For any initial value (z(0),2(0),L(0)), the
resultant closed-loop system has a unique solution on the maximal existence interval [0,,). Then, we will prove that
(z(),2(8), L(?)) is bounded.

Assume that L(#) cannot escape at ¢ =1,. Due to L(f)ZO, L(t) is a monotonically nondecreasing function.
Hence, there exists a time #, such that

L= max{(ggéll)i(zg?)i}},we [t0.77) (42)

which together with (41) indicates

v<- %Luenz” —Lnxu”” +y1. (43)

Thus, it is concluded that (x(#),%(#)) is bounded on [0,f;). Suppose lim,_,; L(#) = +oco. Recalling (15), one has
L =0, which contradicts the hypothesis that lim,,,, L(f) = +o0. Hence, L(?) is bounded on [0,/). Based on (7), it is
concluded that (z(1),2(¢)) is bounded on [0,). From the continuity of the solution, it can be deduced that 7, = +oo.
This implies that (z(¢),2(¢), L(¢)) is bounded on [0, +c0).

Remark 3. As can be seen from Assumption 1, the growth rate ¢ is unknown and its information cannot be directly
utilized in controller design. This makes the controller design more difficult. As a consequence, a dynamic gain L is
introduced to cope with the unknown growth rate.

Remark 4. In the controller design process, we have adopted the technique of adding a power integrator, which uti-
lizes the homogeneous negative term —|&, | in (25) to dominate the superfluous term in the subsequent step.

4. Simulation Example

To illustrate the effectiveness of the proposed control approach, a numerical example is provided in this section.
Example 1. Consider the following system:

1
1 =2+cz),
13
D =v+cezy,
Y=21= Y (44)
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. . . . 2
where ¢ is an unknown constant. It is easy to see that Assumption 1 holds with 7 = 5

The control aim is to track the reference signal y, = sin(#). In the simulation, the parameters are set as ¢ = 0.1,

2
a;=18,a,=38, =29, ,=49,1=1, a= 5 and w = 0.55. The initial conditions are z;(0) = 0.5, z,(0) =
-2, 21(0) =0 and £2(0) = 0. Simulation results are shown in Figures 1—3, from which it can be seen that all closed-
loop signals are bounded. To illustrate the benefit of our controller, a comparative simulation is conducted between
our control scheme and the control scheme in [16] with the same parameters. Figure 1 shows the response curves of
the system state z; and the reference signal y,. Clearly, our control scheme achieves better tracking performance than

the scheme given by [16].

2.0

—_—2

1.5+ —n
. |—--zin[16]

—2.0

0 2 4 6 8 10 12 14 16 18 20
t/s

Figure 1. The curves of the system state z; and the reference signal y, .

60

40 iﬁin[lﬂ |
20 1
0

0 2 4 6 8 10 12 14 16 18 20
t/s

Figure 2. The curve of the control input v.

1.15

110 |
1.05 ¢
100 ———
0 2 4 6 8 10 12 14 16 18 20

t/s

Figure 3. The curve of the dynamic gain L.

5. Conclusion

For a class of nonlinear systems with unknown growth rates, the tracking control problem has been solved via
the output feedback strategy. A novel dynamic gain is introduced to eliminate the effect of the unknown growth rate.
A dynamic-gain observer and an adaptive output feedback controller has been developed by means of adding a
power integrator technique. A numerical example has been given to verify the validity of the presented result.
Inspired by the current work, future work will focus on the prescribed-time fault-tolerant control of uncertain nonlin-
ear systems.
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