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Abstract: The  general  paradigm  of  traditional  Siamese  networks  involves  using  cross-correlations  to
fuse  features  from the  backbone,  and this  paradigm is  limited by the  inductive  bias  of  the  convolution
kernel, resulting in the lack of global information. In this paper, we propose the Siamese learning regres-
sion distribution (SiamLRD) to address the local limitations of traditional cross-correlation operations on
feature fusion and weak self-connections between features within different branches. The SiamLRD uses
the cross-attention mechanism to replace cross-correlations between the features of the target region of
interest  and  the  template  so  as  to  enhance  flexibility.  Firstly,  the  original  transformer  structure  is
improved to  be  suitable  for  convolutional  Siamese  networks.  The improved transformer  architecture  is
then  used  to  replace  cross-correlation  operations,  resulting  in  more  comprehensive  feature  fusion
between  branches.  Secondly,  we  introduce  a  new  decoder  structure  into  the  novel  fusion  strategy  to
enhance the correlation between classification scores and regression accuracy during decoding. Multiple
benchmarks  are  used  to  test  the  proposed  SiamLRD  approach,  and  it  is  verified  that  the  proposed
approach improves the baseline with 5.8% in terms of AO and 9.7% in terms of SR0.75 on the GOT-10K
dataset.
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1. Introduction

Visual object  tracking aims to  estimate  the state  of  a  specified object  in  a  video sequence,  which is  a  funda-
mentally challenging task in computer vision. With the emergence of deep learning-based tracking algorithms [1−7],
the performance of trackers has been greatly improved. Although those new algorithms have broken through the bot-
tleneck of traditional algorithms, their performance potential has not yet been fully explored.

Single-object  tracking  is  a  crucial  important  branch  in  the  field  of  computer  vision.  Siamese  feature  fusion
(SiamFC) [1] formulates the tracking task as a matching problem based on semantic features, but its feature fusion
method  is  incomplete  due  to  direct  cross-correlations  between  feature  maps  of  two  branches.  By  introducing  the
region  proposal  network  (RPN)  strategy,  SiamRPN  [2]  improves  the  feature  fusion  mechanism.  SiamRPN++  [3],
proposed in 2018, innovatively solves the destruction problem of the strict translation invariance by using an effec-
tive  spatial  awareness  sampling  strategy.  SiamCAR [5],  proposed  in  the  same year,  aims  to  reduce  the  number  of
parameters.  In  SiamCAR,  the  anchor-free  idea  is  introduced  and  a  center-ness  auxiliary  branch  is  added  to  the
decoder  heads,  which  alleviates  the  low correlation  between  the  regression  branch  and  the  classification  branch  in
other trackers.

Convolutional neural networks (CNNs) have the inherently strong local inductive bias characteristic of the con-
volution kernel. This characteristic speeds up the convergence of the models, but limits the performance of the con-
volutional network models. One reason is that the features extracted by the convolutional models lack global infor-
mation  [8].  Recently,  attention  structures  have  been  introduced  into  the  field  of  deep  learning.  DETR  [9]  initially
introduces the global  information processing module into the field of  computer  vision,  but  its  convergence is  slow
due to the fact  that  the decoder treats randomly initialized variables as queries.  ViT [10] directly carries out global
modeling in the process of feature extraction, making the model-based transformer [11] structure to have comparable
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performance compared with the convolutional model. Note that the ViT needs more data for training and contains a
large number of parameters, resulting in higher computation costs and storage requirements. Therefore, we retain the
fully convolutional feature extraction network and focus on optimizing the feature fusion stage to improve model per-
formance.

Our model uses CNN as the feature extraction network and adopts the transformer as the feature fusion module.
Subsequently, it is hard to conduct optimization because these two structures employ different learning rate warm-up
strategies. Inspired by [12], we introduce the Pre-LN into our structure to alleviate this conflict and unify the training
process.

The  motivation  of  the  proposed  SiamLRD is  to  combine  global  information  in  order  to  learn  more  accurate
general boundary distributions. In conclusion, our contributions are summarised as follows.

• An encoder-decoder structure is proposed to fuse the dual-branch backbone feature maps of the Siamese net-
work to replace the original depthwise cross-correlation operation.

• Regarding the modified feature fusion strategy, for the regression branch, we guide the model to learn a gen-
eral distribution of object boundaries with acceptable computing costs.

• In order to ensure consistency between the decoding processes of training and testing, we remove auxiliary
detection heads and enhance the consistency between training and testing by expanding the presentation of the classi-
fication branch's output.

• To  ensure  the  reliability  of  the  training  process,  a  Pre-LN  strategy  is  introduced  to  alleviate  the  conflict
between the two structures of the training process.

2. Related Work

2.1. The Siamese Tracker
The Siamese network structure was first introduced to solve single-object tracking problems in SiamFC [1]. To

enable the model to recognize the tracked object, a set of video frames, consisting of a template and search frames, is
input into the Siamese network model based on the weight-sharing strategy. In essence, the Siamese network has only
one  backbone  network  [1].  In  the  tracking  process,  the  backbone  network  is  utilized  to  process  both  the  template
frame and the current frame separately, and this process is figuratively called weight sharing. A noteworthy point is
that  SiamFC's  feature  fusion  method  is  incomplete  due  to  direct  cross-correlations  between  feature  maps  of  two
branches.  To  further  improve  performance,  SiamRPN  [2]  was  proposed  to  improve  the  feature  fusion  strategy  of
SiamFC by replacing the direct feature fusion mechanism of the two branches with an RPN mechanism. Neverthe-
less, the backbone of SiamRPN is shallow, and its feature extraction capability is limited. Therefore, SiamRPN++ [3]
was  proposed  to  successfully  integrate  ResNet  [13]  into  the  Siamese  network  framework  by  introducing  a  spatial
awareness strategy to solve the limitation problem of network depth.

Based  on  the  anchor-free  approach,  SiamCAR  [5]  was  proposed  in  2018  to  reduce  the  number  of  model
parameters  after  introducing  the  deeper  backbone  and  avoid  the  complex  hyperparameter  optimization  problems
associated  with  anchor  boxes.  SiamCAR uses  multi-stage  depthwise  cross-correlations to  replace  the  RPN mecha-
nism,  thereby  improving  the  tracking  speed,  maintaining  the  accuracy  and  simplifying  the  model  structure.  In  this
paper, we consider SiamCAR as our baseline model.

2.2. Vision Transformer
Recently, the attention structure was introduced into the field of tracking. A global information model was pro-

posed in SiamGAT [6] with graph attention structures such as DiMP [14], TrDiMP [15], and SiamAttn [7],  where
attention operations and even transformer modules were directly introduced to replace cross-correlation operations in
the Siamese network architecture. The transformer [11] was originally proposed in the field of natural language pro-
cessing  to  solve  the  problem  of  RNN  parallelization  as  well  as  explicitly  build  global  modeling  capabilities.  The
transformer can adapt to input changes because its attention operation is dynamic. ViT [10] was proposed to serialize
images through convolution,  where  the  transformer  was  introduced  as  a  feature  extraction  network  for  image  pro-
cessing.  Note  that  the  ViT models  the  image  in  a  global  receptive  field  and  extracts  the  global  information  of  the
image.

3. Method

The structure of the proposed model is illustrated in Figure 1 which primarily comprises three parts: a feature
extraction network, a feature fusion network, and a decoding detection head. Among them, we mainly optimize the
feature fusion network and the decoding detection head,  and the optimization process will  be discussed in Subsec-
tions 3.2 and 3.3.
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Figure 1.  The architechture of the proposed model. The feature fusion uses the transformer to replace depthwise cross-
correlations. Heads indicate the general distribution prediction module that is compatible with feature fusion.

 

3.1. Feature Extraction Network

In this paper, the ResNet50 is replaced by the lighter GoogLeNet [16] to act as the backbone network. Addi-
tionally, we remove the pooling layer from the second stage and the fifth stage of the GoogLeNet to ensure that the
size of the feature map is the same as that of the baseline model. In addition, since the spatial structure of the model
needs to be retained and the penalty coefficient is used in the detection head, the outermost four pixels of the feature
map are clipped without loss of performance, as shown in Equation (1). The crop operation also helps to reduce the
interference of background clutters.

crop(x) = x[:, :,4 : h−5,4 : w−5] x ∈ Rb×c×h×w, (1)

h w b c
h−1 w−1

h−5 w−5

where  and  are the spatial sizes of the inputs, and  and  represent, respectively, the batch size and the channel
of  the  inputs.  Since  the  maximum indices  of  feature  map pixels  in  the  spatial  dimension  are  and ,  the
maximum indices for clipping are  and .

3.2. Attention

Q K V
Q K

V

The transformer  gains  the  flexible  modeling ability  under  the  global  context  due to  the  attention mechanism.
Self-attention  projects  the  input  into  three  domains,  namely ,  and ,  through  three  projection  matrices.  The
attention weight is calculated by multiplying the matrices  and , and then applying a softmax function to normal-
ize the attention. After calculating the attention weight map, matrix multiplication is performed between the weight
and  to  obtain  the  output  of  the  attention  module.  This  mechanism  enables  the  model  to  have  the  capability  of
global context modeling. The calculation process is as follows:

Q = xWq,K = xWk,V = xWv;

A(m) = so f tmax
Å

QT (m)K(m)

√
d

ã
;

Attn(Q,K,V) =Concat(A(1)V (1), · · · ,A(n)V (n))Wo,

(2)

Wq ∈ RCin×Cdim Wk ∈ RCin×Cdim Wv ∈ RCin×Cdim Q K V
n A(m) m

d x Wo ∈ RCdim×Cout

where , , and  are linear projection layers. ,  and , respectively, repre-
sent the query, key and value. Meanwhile,  means the total number of attention heads,  is the th attention map
and  is the dimension of  after projection.  is used for further processing of multi-head attention after
concatenation.

Unlike other visual algorithms based on the transformer architecture, the method proposed in this chapter does
not use the vanilla transformer. The reason is that algorithms based on the vanilla transformer are usually optimized
by the Adam [17] optimizer or the AdamW [18] optimizer. Note that the backbone usually needs to be completely
unfrozen in the early stage, which is incompatible with the training process of the CNN backbone network. Mean-
while, due to the slow convergence speed of the vanilla transformer, more epochs are performed for training which
significantly slows down the training speed of  the model.  Therefore,  in  this  chapter,  we adopt  the improved trans-
former  structure.  Specifically,  we  introduce  the  LN  layer  before  the  attention  operation  in  order  to  eliminate  the
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learning rate warm-up of the transformer and harmonize the training strategies of the CNN and the transformer archi-
tecture. The improved structure is called as the Pre-LN transformer, as shown in Figure 2.
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Figure 2.  The structure of the Pre-LN transformer.
 

K V

The model  proposed in  this  paper  inserts  the  transformer  module  into  two branches  of  the  Siamese network.
Specifically, the encoder in the template branch and the decoder in the search branch. The specific structure is shown
in Figure 1. For the encoder, we take the flattened output of the template branch and the absolute positional encoding
as the input of the encoder, as shown in Equation (3). For the decoder placed in the search branch, we modify the
inputs. One of the inputs, which comes from the encoder, is used to produce  an . For the other input, we use the
flattened sequence of the feature map output from the search branch rather than directly choosing an initialized learn-
able sequence. We first perform a self-attention operation in the feature map of the search branch output. Then, we
perform a cross-attention operation between the output of the previous step and the encoder's output.

Qp = Q+ pos,K p = K + pos,V p = V, (3)

pos Qp K p

V V V p
where  represents positional encoding, and  and  mean that they have been added to the positional encod-
ing. Generally,  does not add positional encoding, so  = .

In addition,  our  model  combines both CNN and transformer structures.  Considering the computing costs,  we
simplify the transformer structure to a single layer of the encoder and decoder in the feature fusion stage. The CNN
remains the primary component of the model, while the transformer serves as a feature fusion component. Therefore,
the  main  hyperparameters  of  the  model  are  from the  CNN architecture.  To  address  the  impact  of  hyperparameter
divergence caused by learning rate warm-up, the position of the layer normalization needs to be adjusted.

T (x) = LN(FFN(LN(x+attn(x)))), (4)

LN FFNwhere  stands for the layer normalization, and  represents the fully connected feed-forward network.
In Pre-LN [12], the experimental results show that the position of layer normalization has a significant impact

on the learning rate strategy during the training stage. Specifically,  pre-positioning the layer normalization can pre-
vent the warm-up of the learning rate of the transformer. In this paper, Pre-LN is used to replace the original Post-LN,
as shown in equation (4), in order to eliminate the requirement for the learning rate warm-up hyperparameter of the
transformer.  The  hyperparameter  divergence  is  prevented.  The  modified  process  is  represented  by  the  following
Equation:

T (x) = FFN(LN(x+attn(LN(x)))). (5)

3.3. Head Subnetwork
For the regression branch, the feature fusion subnetwork uses a fusion method based on the attention mecha-

nism to enable the model to comprehend the global image information during training. Additionally, the existence of
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self-attention  helps  the  model  gain  a  more  comprehensive  understanding  of  the  distribution  of  training  data.  This
motivates us to use a distribution-friendly detection head to regress the boundary of the tracked object.  Inspired by
[19], we abandon the optimization of the Dirac distribution, because information presented by the Dirac distribution
has been compressed. Instead, we optimize a more comprehensive distribution that fully utilizes the advantages of the
attention mechanism. Furthermore, an issue of blurred boundaries exists in the dataset. Therefore, optimizing a gen-
eral distribution instead of a Dirac distribution can alleviate the impact of blurred boundaries in the dataset.

l t r b
Pl Pt Pr Pb

The predicted  bounding box can be  represented  by the  distances  from the  corresponding location to  the  four
sides of the bounding box in the input search region. We no longer optimize the general distribution based on the four
distances of the left ( ), top ( ), right ( ), and bottom ( ), as in the case of the Dirac distribution. Instead, we directly
optimize  the  discrete  probabilities  of  the  distances  on  the  left  ( ),  top  ( ),  right  ( ),  and  bottom ( ).  For  the
improved model, the bounding box can be calculated from the corresponding discrete probabilities as follows:

y =
n∑

i=0

Py(xi)xi (6)

y ∈ [l, t,r,b] Py(x) xi xiwhere ,  represents the probability that the location is a boundary when the distance is , and 
represents the distance from the current pixel. We apply the distribution focal loss (DFL) [19] to guide the discrete
probability distributions. Additionally, we employ the GIOU loss [20] to optimize the bounding box obtained from
Equation (6).

Lp =
∑
h,w

−1
4

∑
i∈[l,t,r,b]

((xi,2− targeti) log(Pi,2)+ (targeti− xi,1) log(Pi,1)) (7)

xi,∗ xi,1 xi,2

Pi,∗ xi,∗ targeti

where  represents the distance from the current position to the boundary box,  and  represent the two dis-
cretized distances which are closest to the target boundary,  represents the probability of , and  is the
boundary label.

For the classification branch, we remove the auxiliary detection head, and extend the meaning of the classifier's
labels to enhance the correlation between the learning processes of the two branches.

Specifically, we expand the meaning of the classification branch directly in order to address the differences in
processing classification response maps during the training and testing stages of the auxiliary branch. This not only
enables the classification branch to learn the discriminative function between the tracked object and background, but
also allows direct prediction of the regression branch and regression quality. The proposed method enhances the cor-
relation  between the  knowledge  of  the  two branches,  guiding  the  classification  branch  to  focus  on  the  intersection
over union (IOU) between the regression bounding box and the ground truth.

The calculation process of IOU is as follows:

IOU =
A∩B
A∪B

(8)

A Bwhere  and  represent the predicted bounding box and ground truth bounding box, respectively.

0

Drawing inspiration from IOUNet [21],  we first  extend the discrete logical variables (that represent the target
foreground and background) to continuous value domains. As shown in Equation (9), for the background classifica-
tion label, we uniformly define it as . Our work mainly expands the classification labels of the foreground informa-
tion of the tracked target. Specifically, the foreground labels of the classification branch are the IOU values between
the regression bounding box and the ground truth. The values of classification labels describe the confidence coeffi-
cient  by  which  the  target  is  classified  as  the  foreground  and  the  quality  of  the  predicted  results  of  the  regression
branch at the current position.

ylabel =

ß
ycls ∗ IOU, if ycls , 0
0, if ycls = 0 (9)

ylabel yclswhere  represents the continuous classification label, and  represents the discrete classification label.
For the classification branch after continuous processing, BCELoss cannot be applied for training. In this paper,

we introduce the quality focal loss [19] to address the training problem, as shown in Equation (10).

QFL = −|ylabel− ỹ|β((1− ylabel) log(1− ỹ)+ ylabel log(ỹ)) (10)

ylabel ỹ βwhere  is the continuous classification label,  is the prediction of the classification branch, and  is a tunable
parameter used to control the down-weighting rate smoothly.

To further enhance the correlation between the classification branch and the learned boundary distribution, we
introduce a classification guidance module based on the method proposed in [22], as shown in Figure 3. This module
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4

incorporates the learned distribution from the regression branch into the classification branch to influence the classifi-
cation results. The structure of the classification guidance module is composed of two convolutional layers, with the
ReLU activation function applied after the first layer. Specifically, we use the TOP-K method (where K is set to be

) to obtain boundary distribution information from the regression branch. This information is processed by the clas-
sification guidance module and then multiplied by the classification logits, yielding the final classification score map.
The specific process is shown in Equation (11).

CG =Conv(Relu(Conv(topk( f ))));
CS core =Cls∗CG (11)

f CG
CS core

where  represents the output of the regression branch,  represents the output of the classification guidance mod-
ule, and  represents the enhanced classification score map.

The improved loss function is as follows:

Losstitle = lQFL +λ1 ∗L1+λ2 ∗ lgiou (12)

λ1 λ2 0.25 1 Losstitle

lQFL L1 lgiou

where  and  are the weights of the loss function, which are set to be  and  by default.  is the sum
of the two branch loss functions,  is the classification loss,  is the L1 loss, and  is the GIOU loss.
  

Conv

ReLu

sigmoid

Conv

Figure 3.  Classification guidance module.
 

4. Experiments

4.1. Experimental Details

0.1 0.02 0.1

10%

Each version of the model proposed in this paper is deployed on a server installed with two GPUs (1080ti). The
number of training epochs is consistent with the baseline model. The training strategy is as follows: the base learning
rate is set to be , the initial learning rate is set to be , and the learning rate is warm-up to be  during the
first five epochs. The cosine annealing strategy is used to adjust the learning rate in the next 15 epochs. The learning
rate of the backbone network is set to be  of that of the other modules. The optimizer is SGD, and the weight
decay and momentum settings are consistent with the baseline model. The parameters of the backbone are unfrozen
at the 11th epoch. In addition, the training datasets are the same as those in SiamCAR [5]. The models are evaluated
on three public benchmarks: GOT-10K [23], LaSOT [24] and LaSOText [24].

4.2. Evaluation Results on GOT-10K

10000

5.8%
5.8% 0.5 9.7% 0.75

GOT-10K is  a  widely-used  benchmark  for  evaluating  the  tracking  performance  of  object  tracking  models.  It
contains over  video sequences. The evaluation process is conducted online to ensure the fairness of the test-
ing process, and the labels of the test set are not publicly available. In the evaluation protocol, the training process can
only use the train set split from GOT-10K. We comply with this requirement and compare our model with the state-
of-the-art trackers. As shown in Figure 4 and Table 1, our model surpasses SiamCAR [5] by  in terms of AO,
by  in terms of SR  and by  in terms of SR , outperforming other public trackers on the GOT-10K
dataset.
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Figure 4.  Success plot on GOT-10K [23].
 
  

Table 1    The evaluation on GOT10k [23] benchmark
Tracker ↑AO 0.5 ↑SR 0.75 ↑SR

DaSiamRPN [25] 44.4 53.6 22.0

SPM [26] 51.3 59.3 35.9

SiamFC++ [27] 52.6 62.5 34.7

ATOM [28] 55.6 63.4 40.2

SiamCAR [5] 56.9 67.0 41.5

SiamFDB [29] 61.0 70.5 48.2

DCFST [30] 61.0 71.6 46.3

DiMP50 [14] 61.1 71.7 49.2

PrDiMP18 [31] 61.2 71.3 50.3

SiamSTM [32] 62.4 73.0 50.3

SLTSiamAtn [33] 62.5 75.4 50.1

SiamGLA [34] 62.6 73.2 50.5

Ours (Transformer) 62.7 72.8 51.2

Values marked by red, green, and blue represent the order of each indication from the first to the third columns.
 

4.3. Evaluation Results on LaSOT

1400 35000 280

2.0%
1.9%

LaSOT  dataset  [24]  is  a  challenging  dataset  of  long-term  video  sequences  designed  for  object  tracking.  The
dataset  contains  more  than  video  sequences  and  approximately  frames  with  more  than  video
sequences for testing. Our model is compared with the baseline tracker and the state-of-the-art trackers. As shown in
Figure  5 and Table  2,  the  precision  is  improved  by  compared  with  SiamCAR  [5],  and  the  success  rate  is
increased by .  In  addition,  the  success  rate  of  the  model  proposed in  this  paper  is  slightly  lower  than that  of
LTMU [35],  and  the  precision  is  higher  than  that  of  LTMU,  which  is  due  to  the  contribution  of  the  classification
guidance module. In a word, the proposed tracker outperforms other public trackers.
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Figure 5.  Contrast plot on LaSOT [24]. (a) Precision plot. (b) Success plot.
 
 
 

Table 2    The evaluation on LaSOT [24] benchmark
Tracker ↑Precision ↑Success

SiamRPN++ [3] 0.493 0.495

ATOM [28] 0.497 0.499

SiamBAN [4] 0.521 0.514

SiamCAR [5] 0.524 0.516

GlobalTrack [36] 0.528 0.517

DaSiamRPN [25] 0.529 0.515

Ours(DW-XCorr) 0.531 0.518

LTMU [35] 0.535 0.539

SiamFDB [29] 0.540 0.527

Ours (Transformer) 0.544 0.535

Values marked by red, green, and blue represent the orders of each indication from the first to the third columns.
 

4.4. Evaluation Results on LaSOText

15
150

35.0%

LaSOText dataset is an extended benchmark for LaSOT. Different from LaSOT [24], LaSOText uses all 1400
video  frame  sequences  from  LaSOT  as  the  training  set  and  the  categories  that  are  not  related  to  the  original
LaSOT (  video frame sequences in total) as the test set. This enables the LaSOText benchmark to detect model
generalization more effectively than LaSOT. As shown in Figure 6 and Table 3, our model achieves a success rate of

 and outperforms other trackers.
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Figure 6.  Success plot on LaSOText [24].
  

Table 3    The evaluation on LaSOText [24] benchmark
Tracker ↑Success

ECO [37] 0.220

SiamFC [1] 0.230

SiamDW [38] 0.237

VITAL [39] 0.263

C-RPN [40] 0.275

MDNet [41] 0.279

GFSDCF [42] 0.281

SiamMask [43] 0.332

SiamRPN++ [3] 0.340

Ours (Transformer) 0.350

Values marked by red, green, and blue represent the orders of each indication from the first to the third columns.

4.5. Ablation Study
To validate the effectiveness of the proposed model, we conduct ablation experiments to compare the impact of

different structures. The following groups of experimental data are mainly compared. The transformer feature fusion
module  in  our  model  is  replaced  by  a  double-branch cross-correlation module  to  create  a  new model  that  is  com-
pared with  our  model  and the  baseline  model.  SiamCAR-ours  represents  that  the  baseline  model  is  trained by our
hardware, and SiamCAR-B represents the data presented in [5]. Ours (DW-XCorr) means to change the transformer
feature fusion module into a double-branch (corresponding to two detection heads) cross-correlation operation. Ours
(transformer) represents the model proposed in this paper.

4.1%
5.8% 0.5 5.8% 7%

As  shown  in Table  4,  the  proposed  model  surpasses  the  two-branch  feature  fusion  model  by  and  the
baseline model by  in terms of AO. The SR  gains improvement of  achieving the second place and 
achieving the third place. In addition, the transformer architecture used in our model is a single layer version, show-
ing that the proposed model achieves better performance with a similar parameter number.
  

Table 4    The ablation study on GOT10k [23] benchmark
Tracker ↑AO 0.5 ↑SR 0.75 ↑SR

SiamCAR-ours 54.7 63.5 42.6

SiamCAR-B [5] 56.9 67.0 41.5

Ours(DW-XCorr) 58.6 65.8 43.4

Ours (Transformer) 62.7 72.8 51.2

Values marked by red, green, and blue represent the orders of each indication from the first to the third columns.
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5. Conclusion

In this paper, we have proposed a network structure that integrates a CNN and a transformer module to com-
bine the strengths of both. The effectiveness of the proposed structure has been fully demonstrated by experiments.
These  experiments  have  also  indirectly  proven  that  existing  CNNs  lack  global  information.  Compared  to  the  case
where the transformer is used as the backbone network model, the proposed model has the problem of a sharp decline
in regression accuracy under complex backgrounds. To alleviate this problem, in the future, we will explore the fea-
tures extracted by the convolutional backbone network and the transformer backbone network, respectively.
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