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Abstract: This paper is concerned with the problem of fault-tolerant formation consensus control for lin-
ear time-varying (LTV) multi-agent systems (MASs) with stochastic communication protocol (SCP). The
SCP is  introduced  to  schedule  the  signal  transmission,  and  only  one  neighbouring  agent  is  allowed  to
transmit  data  at  one  instant.  The  purpose  of  this  work  is  to  design  a  fault-tolerant  controller  for  each
agent, so that, for all probabilistic scheduling behaviors, MASs can achieve the  formation consensus
performance. The state and fault are augmented into a new vector, meanwhile, each agent system is writ-
ten as a singular one and a state observer is designed. By utilizing the estimated information of states and
faults, the designed time-varying compensation term can reduce the impacts of unknown external distur-
bances  and  faults.  Then,  a  sufficient  condition  is  obtained  to  guarantee  the  performance  constraint
over the finite horizon for closed-loop systems. The parameters of observers and controllers are derived
by  solving  coupled  backward  recursive  Riccati  difference  equations.  Finally,  a  numerical  example  is
given to validate the effectiveness of the proposed fault-tolerant control scheme.

Keywords: fault-tolerant formation consensus control; multi-agent systems; backward recursive Riccati
difference equations; stochastic communication protocol

 
 
1. Introduction

Formation control is one of the core problems in the research field of MASs. In many tasks, multi-agents need
to maintain a predetermined geometrical shape, that is, formation, with each other in the process of moving toward a
specific target or direction, such as effective search, patrol and exploration [1–4]. MASs have the characteristics of
distributed composition and parallel execution of tasks, so multi-agent formation offers better fault tolerance and mis-
sion  efficiency  than  a  single  agent  and  can  acquire  surrounding  environment  information  as  well  as  save  fuel  or
energy  in  some  vehicle  systems,  such  as  unmanned  aerial  vehicles  (UAVs)  and  autonomous  underwater  vehicles
(AUVs)  [5,6].  In  addition,  formation control  has  a  good prospect  in  industry,  military  and aviation  [7],  thus  it  has
exerted much fascination on control communities.

Similar to sensor networks,  the structure of MASs is  more fragile than general  centralized systems [8,9],  and
coupled with the harsh working environment, agents are easily to prone to the faults or cyberattacks [10], which may
propagate to the healthy individuals through the special communication topology [11]. Therefore, to ensure the relia-
bility and safety of MASs, it is essential that a robust and reliable fault-tolerant control (FTC) system completes its
operation within an acceptable time window after fault occurrence in the presence of disturbances in the system [12].
The overall goal of FTC systems is to accommodate faults in the system components during operation and maintain
stability with little or acceptable degradation in the performance levels [13]. Fault-tolerant formation control is usu-
ally considered as a special case of FTC, which is mainly divided into two categories characterized by whether there
exists the fault detection and isolation (FDI) module. The active FTC system has its advantages in dealing with all
kinds of faults, and the system can achieve the best FTC performance by reconstructing the controller [14]. The pas-
sive FTC system draws on the idea of robust control, and the designed controller has strong robustness for the fault of
a certain severity [15].

By now, the fault-tolerant formation control over MASs has been widely studied and a rich body of algorithms
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have been proposed, where the observer approach has been extensively applied in the problem of FTC [16–22]. On
the basis of the estimated state, fault and uncertainty information, fault-tolerant controllers were developed to achieve
the desired formation objectives. For instance, in [16], two kinds of distributed finite-time observers were presented
for each follower, thus eliminating the assumption that the leader’s information is derived by all agents directly. The
problem of robust relative motion control in a multirobotic system was solved by sliding mode control technique in
[17],  where  the  parameters  of  fault  were  estimated  using  a  residual-based  synchronous  fault-detection  scheme.  In
[18],  by  virtue  of  introducing  fault  estimators,  the  developed  controller  was  effective  to  compensate  for  actuator
faults,  sensor faults  and unknown nonlinearity simultaneously.  An adaptive fault-tolerant  output feedback con-
trol scheme was developed based on unknown input observers in [19,20]. Moreover, the fault-tolerant time-varying
formation control problem has caused considerable attention from a variety of communities and a lot of distributed
algorithms have been developed in [23–26]. However, only certain types of faults considered in the design stage can
be treated by the passive FTC system. In general, from the perspective of performance, active FTC is superior to pas-
sive FTC scheme.

Compared with time-invariant MASs, the convergence analysis on the FTC problem for time-varying MASs is
more challenging due to the complexity caused by time variance [27]. Consensus problem is a fundamental problem
in cooperative control of MASs, to mention a few, the leader-following consensus for time-varying MASs has been
adequately discussed in [27–32]. Besides, in [33–36], many distributed algorithms have been developed for consen-
sus problems of nonlinear time-varying MASs models expressed via various representations. However, it should be
pointed  out  that  studies  on  fault-tolerant  formation  control  problem for  time-varying  MASs  has  not  been  properly
studied so far.

In a typical network with limited bandwidth, multiple simultaneous transmissions on the network will  lead to
inevitable data conflicts. One of the effective ways to prevent data conflicts is to arrange the transmission of signals
according to specific communication protocols. Communication protocols are extensively applied in MASs including
SCP [37,38],  try-once-discard  (TOD) protocol  [39],  the  round-robin  (RR) protocol  [40,41],  and the  random-access
(RA), etc. Moreover, the use of communication protocols makes the system information incomplete [42], and hence
the development of new control algorithms is of great significance to deal with the incomplete information.

Invoked by the above literature review, in this paper, we aim to deal with the problem of distributed fault-toler-
ant formation consensus control for a class of LTV MASs. This problem is by no means trivial due to the following
identified technical challenges:

1) For a LTV MAS with unknown disturbances and faults, the faults will propagate along the communication
topology, resulting in a significant reduction in formation consensus performance. How to design a FTC scheme to
improve the system robustness to disturbances and faults?

2) For a LTV MAS under SCP scheduling, how to deal with the difficulty in the analysis of fault-tolerant for-
mation consensus control problem caused by SCP scheduling?

3) How to obtain the state and fault information of the system simultaneously by the observer technique?
In light of those three questions, the main contributions of this paper are highlighted as follows:
1) A novel fault-tolerant formation consensus control scheme is,  for the first time, proposed for a LTV MAS

subjected to unknown external disturbances, system and sensor faults, directed topologies as well as SCP.
2) Under the premise of allowing a small sacrifice of formation consensus performance, a time-varying fault-

tolerant controller is designed for each agent based on estimation information of observers, which can tolerate system
and sensor faults without making any assumptions on faults.

H∞3) A sufficient condition for the existence of fault-tolerant  formation consensus controllers is given, and a
novel coupled backward recursive RDE method is proposed for time-varying systems with the stochastic parameter
matrices.

The rest of this article is organized as follows. In Section II, some basic knowledge of graph theory, the discrete
LTV MAS as  well  as  the structures  of  observers  and fault-tolerant  formation consensus controllers  are  introduced,
and  the  problem  under  the  consideration  is  formulated.  In  Section  III,  the  observer  and  controller  parameters  are
obtained by solving backward recursive RDEs. Furthermore, a numerical illustrative example is given in Section IV
to show the feasibility and effectiveness of the proposed controller design scheme. Finally, the conclusion is drawn in
Section V.

R Rn Rm×n n
m×n AT A ⊗

◦ I In

n 0 1n n
† {P1,

P2, · · · ,Pn} P1,P2, · · · ,Pn A > B
A B A−B {·}

Notations.  is the space of all real numbers.  and  respectively represent the -dimensional Euclidean
space and the set of all  real matrices.  denotes the transpose of a matrix .  denotes the operation of Kro-
necker  product.  is  the  Hadamard  product  of  matrices.  is  the  identity  matrix  with  appropriate  dimensions, 
denotes the -dimensional identity matrix, and  denotes a zero matrix with appropriate dimensions.  denotes an 
dimensional  column  vector  with  all  ones.  The  superscript  denotes  Moore-Penrose  pseudo  inverse.  diag

 stands  for  a  block-diagonal  matrix  whose  diagonal  elements  are .  The  notation ,
where  and  are real symmetric matrices, means that  is positive definite. Prob  refers to the occurrence
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{·} E{x} x ∥x∥ x
∥A∥F A ρ (A) A δ⃗(·)

δ⃗(a) = 1 a = 0 δ⃗(a) = 0

probability of the event .  denotes the mathematical expectation of .  represents the Euclidean norm of ,
and  denotes the Frobenius norm of .  denotes the spectral radius of the square matrix .  represents
the Kronecker delta function with  (if ) and  (otherwise).

2. Problem Formulation and Preliminaries

2.1. Graph Theory
N G = {V,E,A}

V = {v1,v2, · · · ,vN} vi i G
(vi,v j) i

j E ⊆ V ×V E = {(vi,v j) : vi,v j ∈ V, i , j}
A =

[
ai, j
]
∈ RN×N ai, j

ai, j > 0⇔ (vi,v j) ∈ E (vi,vi) < E ai,i = 0
vi ∈ V Ni = {v j ∈ V : (vi,v j) ∈ E, i , j} vi D = diag {d1,d2, . . . ,dN}

di =
∑

j∈Ni
ai, j L = A−D ∈ RN×N li, j

li,i =
∑N

j=1, j,i ai, j li, j = −ai, j i , j

The  communication  topology  among  the  agents  is  described  by  a  weighted  directed  graph ,
where  represents the collection of nodes, and  represents the -th node of the graph . In the
description of MASs, the nodes represent the location of agents. A directed edge  means agent  can receive
information  from  agent ,  and  means  the  set  of  directed  edges,  where .

 denotes the weighted adjacency matrix, which consists of the non-negative elements  satisfy-
ing .  In  this  paper,  self-edges  are  not  allowed,  which  means  and  for  any

.  means the neighborhood of agent .  is  on behalf
of the degree matrix with . The Laplacian matrix  consists of the elements , and

,  for all .

2.2. Problem Formulation
N

l i ∈ Ni l
εl(k) ∈ Nl l k

εl(k)
εl(k)(l ∈ {1,2, · · · ,N})

εl(k) = i

Considering  a  MAS composed of  identical  agents,  in  order  to  prevent  data  collisions,  we assume that  for
agent ,  only  one  neighboring  agent  is  allowed  to  transmit  data  to  agent  at  each  transmission  instant.  Let

 represent the neighboring agent which gets the opportunity to transmit data to the agent  at time instant .
As discussed in [43],  could be regarded as a sequence of random variables to represent the scheduling behavior
of  the  SCP.  All  the  random  variables  are  mutually  independent,  and  the  probability  of

 is

Prob {εl(k) = i} = pi
l(k), l ∈ {1,2, · · · ,N} , i ∈ Nl, (1)

pi
l(k)≥0 i l k∑

i∈Nl
pi

l(k) = 1 pi
l(k) = 0(i < Nl)

where  represents  that  agent  transmits  data  to  agent  at  time  instant ,  and  there  has  been  a  common
assumption that , and .

εl(k)
Nl l

Remark 1: As discussed in extensive existing literature, the SCP is generally employed to determine which node
has  the  priority  of  accessing  to  the  communication  networks  at  each  transmission  instant,  which  can  effectively
reduce the communication burden among sensors [44]. The probabilistic accesses of SCP have been identified as a
set of random variables affecting the system performance [45]. For the considered SCP,  is a stochastic process,
which can randomly generate the number from the set  (e.g. the neighborhood of agent ) subject to the transition
probability determined in (1).

(k ∈ [0,T −1]) N
l

Consider the following discrete LTV MAS defined on the finite horizon  and composed of 
agents, whose topology is a directed graph, and the dynamics of the -th agent is described by

xl(k+1) = A(k)xl(k)+B(k)ul(k)+E(k)wl(k)+E f (k) fl(k),
yl(k) =C(k)xl(k)+D(k)vl(k)+F f (k) fl(k),
rl(k) = V̄(k)xl(k), l = 1,2, · · · ,N,

(2)

xl(k) ∈ Rnx yl(k) ∈ Rny ul(k) ∈ Rnu fl(k) ∈ Rn f rl(k) ∈ Rnr

l wl(k) ∈ L2 ([0,T −1] ;Rnw )
vl(k) ∈ L2 ([0,T −1] ;Rnv ) wl(k) ∥wl(k)∥≤ϖ, l ∈ {1,2, · · · ,N}
ϖ A(k) B(k) E(k) E f (k) C(k) D(k) F f (k) V̄(k)

where , , ,  and  represent the system state, the measurement
output, the control input, the fault and the control output respectively for the -th agent. 
and  are  external  disturbances,  respectively.  satisfies ,
where  is  a non-negative constant. , , , , , ,  and  are known and time-
varying matrices with appropriate dimensions.

l(k) =
[
lT
1 (k), · · · , lT

N(k)
]T (ll(k) ∈ Rnx )

l e f
l (k) ≜ xl(k)− ll(k) ec

l (k) ≜ e f
l (k)− 1

N

∑N

i=1
e f

i (k)

To facilitate the analysis of the problem, the following definitions are needed. Define the reference formation as
a  time-varying  matrix ,  which  is  assumed  to  be  known.  Subsequently,  define

formation error and formation consensus error for agent  as  and ,
respectively.

ξl(k) =
[
xT

l (k) f T
l (k)

]T
The premise of achieving fault-tolerant formation consensus control is to obtain the state and the fault informa-

tion of the system. For the sake of the subsequent analysis, by defining , system (2) can be
rewritten as the following singular system:

Ēξl(k+1) = Ā(k)ξl(k)+B(k)ul(k)+E(k)wl(k),
yl(k) = C̄(k)ξl(k)+D(k)vl(k),
rl(k) = V(k)ξl(k),

(3)
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Ē ≜
[
Inx

0nx×n f

]
Ā(k) ≜

[
A(k) E f (k)

]
C̄(k) ≜

[
C(k) F f (k)

]
V(k) ≜ V̄(k)Ē C(k)

(C̄(k), Ā(k))
where , , , . Assume that  is row
full rank and  is observable.

H∞

In  this  article,  the  problem of  finite-horizon  formation  consensus  control  is  studied  for  the  LTV MAS under
SCP.  In  the  objective  system,  exogenous disturbances,  sensor  and system faults  are  considered simultaneously.  To
deal with this problem, an observer is designed for each agent to obtain the system state and fault information, and a
new distributed active FTC method is developed via adding a compensation term to alleviate the effects of system
faults, time-varying parameters and external disturbances on the formation consensus among the agents. The follow-
ing introduces the definition of achieving  formation consensus for MAS (2).

γ1 > 0 W1Definition 1: Let a disturbance attenuation level  and a positive definite matrix  be given. Consider-
ing MAS (2) with a connected directed topology, if

E

{
N∑

l=1

T−1∑
k=0

Ä∥∥ēc
l (k)
∥∥2−γ2

1

∥∥δ̄l(k)
∥∥2
ä
−γ2

1(ec(0))T (IN ⊗W1)ec(0)

}
< 0 (4)

H∞
(k ∈ [0,T −1]) ēc

l (k) ≜ V̄(k)ec
l (k) δ̄l(k)

holds,  then  the  MAS  is  said  to  satisfy  the  consensus  performance  constraint  over  the  finite  horizon
, where , and  represents the influence of faults, estimation errors and external

disturbances on the formation consensus error system, and its definition will be given later.

2.3. State Observers Design
k [0,T −1] {X(k+1)}0≤k≤T−1

rank
([

C̄T (k+1) I− ĒT XT (k+1)
])
= rank

(
C̄(k+1)

)Assumption 1:  At  each transmission instant  in  the  finite  horizon ,  there  exists 
that would make  holds.

In order to estimate the faults and system states simultaneously, a decentralized state observer is designed for
system (3): ®

zl(k+1) = M(k)zl(k)+T (k)ul(k)+G(k)yl(k)−Q(k) (yl(k)− ŷl(k)) ,

ξ̂l(k+1) = zl(k+1)+R(k+1)yl(k+1),
(5)

zl(k) ∈ Rnx+n f ξ̂l(k) ξl(k)
{Q(k),M(k),T (k),G(k),R(k)}0≤k≤T−1

{X(k+1)}0≤k≤T−1

where  and  respectively denote the observer state and the estimation of augmented vector .
 are  the  observer  parameters  that  need  to  be  computed,  and  there  exists  a

sequence of matrices  satisfying the following time-varying equations:

X(k+1)Ē+R(k+1)C̄(k+1) = Inx+n f
, (6)

X(k+1)B(k) = T (k), (7)

X(k+1)Ā(k) = M(k), (8)

M(k)R(k) =G(k), (9)

{R(k+1)}0≤k≤T−1where Assumption 1 guarantees that equation (6) must have a non-zero solution .
In  this  paper,  the  idea  of  active  fault-tolerant  scheme  is  employed  to  deal  with  formation  consensus  control

problem, and the FTC scheme is shown in Figure 1. By utilizing the state and fault information obtained by the esti-
mator, the fault-tolerant formation consensus controllers would be construct for the MAS to compensate for the influ-
ence of faults and exogenous disturbances.
  

l th agent system

State observer

Stochastic

communication

protocol

Fault-tolerant

controller

wl(k), vl(k), fl(k) rl(k)

ul(k)

yl(k)ξl(k)ˆ

ξi(k), (i∈l)
ˆ

ξεl(k)(k)ˆ

Figure 1.  Structure of fault-tolerant distributed formation consensus control scheme.
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2.4. Formation Consensus Controllers Design

The  core  idea  of  the  fault-tolerant  controller  design  is  to  attenuate  the  influence  of  external  disturbances  and
faults by adding the compensation term to the formation consensus controller. Under the SCP scheduling, the fault-
tolerant formation consensus controller is designed as follows:

ul(k) = K(k)
(
Ēξ̂εl(k)(k)− lεl(k)(k)− Ēξ̂l(k)+ ll(k)

)
− K̄(k)

(
l̃l(k)+E f (k)Ẽξ̂l(k)

)
= K(k)

∑
i∈Nl

al,iλ
l
i(k)
(
Ēξ̂εl(k)(k)− lεl(k)(k)− Ēξ̂l(k)+ ll(k)

)
− K̄(k)

(
l̃l(k)+E f (k)Ẽξ̂l(k)

)
, (10)

{
K(k), K̄(k)

}
0≤k≤T−1 ∈ R

nu×nx
λl

i(k) = δ⃗(i−εl(k)), (i ∈ Nl) l̃l(k) ≜
A(k)ll(k)− ll(k+1) Ẽ ≜

[
0n f×nx

In f

]
al,i l i

A

where  are  the  gain  matrices  to  be  determined, , 
, ,  and  is the element in the -th row and the -th column of the weighted

adjacency matrix .
eξl (k) ≜ ξl(k)− ξ̂l(k)Defining estimation errors of augmented states , other variables

eξ(k) =
î
eξ1(k), · · · ,eξN(k)

óT
,u(k) = [u1(k), · · · ,uN(k)]T ,e f (k) =

î
e f

1(k), · · · ,e f
N(k)
óT
,

l̃(k) =
[
l̃1(k), · · · , l̃N(k)

]T
, ξ̂(k) =

[
ξ̂1(k), · · · , ξ̂N(k)

]T
, ε(k) = [ε1(k), · · · , εN(k)]T ,

yields the following compact form of fault-tolerant controller (10):

u(k) = (IN ⊗K(k))
Ä

L⃗(ε(k))⊗ Inx

ä(
e f (k)−

(
IN ⊗ Ē

)
eξ(k)

)
−
(
IN ⊗ K̄(k)

)
l̃(k)

−
(
IN ⊗ K̄(k)E f (k)Ẽ

)
ξ̂(k) (11)

where

L⃗(ε(k)) ≜ A◦ Λ⃗(k)− D⃗(k), Λ⃗(k) ≜
[
λi

j(k)
]

N×N
, D⃗(k) ≜ diag

¶
d⃗1(k), · · · , d⃗N(k)

©
,

d⃗i(k) ≜
∑

j∈Ni

ai, jλ
i
j(k).

L⃗(ε(k))
εl(k)(l ∈ {1,2, · · · ,N}) d⃗i(k) i L⃗(ε(k))
ai, jλ

l
i(k) A◦ Λ⃗(k)

D⃗(k)

Remark  2:  Obviously,  is  a  stochastic  parameter  matrix  whose  value  depends  on  the  sequences
.  It  can be seen that  indicates  the -th  row-sum of .  Bring the  SCP in  mind,  if

 is  regarded  as  the  element  of  the  new adjacency  matrix,  then  acts  as  the  adjacency  matrix,  and
 indicates the degree matrix in this case.

εl(k) h(k)To facilitate the subsequent analysis, a relationship between  and one random sequence  is developed
by mapping technique.

εl(k) (l ∈ 1,2, · · · ,N,k = 0,1, · · · ,T )
h(k) ∈ R ≜

{
1,2, · · · ,NN ,k = 0,1, · · · ,T

}Lemma  1:  The  random  variable  sequences   representing  the  scheduling
behavior of SCP can be mapped to sequence  :

h(k) = H(ε(k)) =
N∑

l=1

N l−1 (εl(k)−1)+1. (12)

h(k) εl(k) ρl(h(k)) (l = 1,2, · · · ,N)Moreover, if  is given, then the value of  can be obtained by :

εl(k) = ρl(h(k)) = mod
Åõ

h(k)
N l−1

û
,N
ã
+1. (13)

h(k) h(k) ∈ R
εl(k) εl(k)−1 < N l ∈ {1,2, · · · ,N}

h(k) ∈ R

Proof: By noting (12), it readily follows that, for sequence  calculated by (12),  holds. Below we
continue the proof on that  can be acquired by (13). Since  holds for all , for any
given , it follows

ρl(h(k)) = mod
Åõ

h(k)
N l−1

û
,N
ã
+1

= mod

(
N−l∑
j=0

NN− j−l
(
εN− j(k)−1

)
,N

)
+1

= εl(k).

h(k) ε(k)
h(k) εl(k) (l ∈ 1,2, · · · ,N)

It can be concluded that there is a one-to-one correspondence between the variable  and the vector . Hence,
the peculiarity of  is determined by the random sequences .

k ∈ [0,T −1] h(k) = i ∈ RLemma 2: For any , the occurrence probability of  is
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p̄i(k) = Prob {h(k) = i}

=

N∏
l=1

Prob {εl(k) = ρl(i)}

=

N∏
l=1

pρl(i)
l (k). (14)

εl(k) = ρl (h(k)) l ∈ {1,2, · · · ,N} εl(k)

εl(k) = ρl(i) l ∈ {1,2, · · · ,N}

Proof:  Because  holds for  all ,  and  is a  random variables  with indepen-
dent distribution according to the character of SCP, it yields (14) by noticing (1), where continued multiplication indi-
cates intersection, that is  holds simultaneously for all .

2.5. Closed-Loop System
The following lemma is presented before moving to next part.

A ∈ Rn×n B ∈ Rn×n A◦B
ABT

Lemma 3: [46] For arbitrary matrices  and , the row-sums of  are the diagonal elements
of , i.e.,

N∑
j=1

(A◦B)i, j =
(
ABT

)
i,i.

For the sake of presentation, let us introduce some notations:

ξ(k) =
[
ξ1(k), · · · , ξN(k)

]T
,y(k) =

[
y1(k), · · · ,yN(k)

]T
, ŷ(k) =

[
ŷ1(k), · · · , ŷN(k)

]T
,

w(k) = [w1(k), · · · ,wN(k)]T ,v(k) = [v1(k), · · · ,vN(k)]T ,z(k) = [z1(k), · · · ,zN(k)]T .

Then, the MAS (3) and the observers (5) can be respectively written in the following compact forms:
(
IN ⊗ Ē

)
ξ(k+1) = (IN ⊗ Ā(k))ξ(k)+ (IN ⊗B(k))u(k)+ (IN ⊗E(k))w(k),

y(k) = (IN ⊗ C̄(k))ξ(k)+ (IN ⊗D(k))v(k),
r(k) = V(k)ξ(k),

(15)

and ®
z(k+1) = (IN ⊗M(k))z(k)+ (IN ⊗T (k))u(k)+ (IN ⊗G(k))y(k)− (IN ⊗Q(k)) (y(k)− ŷ(k)) ,

ξ̂(k+1) = z(k+1)+ (IN ⊗R(k+1))y(k+1),
(16)

V(k) ≜ IN ⊗V(k)where .
Subsequently, the estimation error system can be obtained by (10)

eξ(k+1) = ξ(k+1)− ξ̂(k+1)
= ξ(k+1)− z(k+1)− (IN ⊗R(k+1))y(k+1)
= ξ(k+1)− (IN ⊗M(k))z(k)− (IN ⊗T (k))u(k)− (IN ⊗G(k))y(k)+ (IN ⊗Q(k)) (y(k)− ŷ(k))

−
(
IN ⊗R(k+1)C̄(k+1)

)
ξ(k+1)− (IN ⊗R(k+1)D(k+1))v(k+1)

=
(
IN ⊗

(
I−R(k+1)C̄(k+1)

))
ξ(k+1)− (IN ⊗M(k))z(k)− (IN ⊗T (k))u(k)

− (IN ⊗G(k))y(k)+ (IN ⊗Q(k)) (y(k)− ŷ(k))− (IN ⊗R(k+1)D(k+1))v(k+1). (17)

Substituting (6) into (17) and considering (3), it follows

eξ(k+1) =
(
IN ⊗X(k+1)Ā(k)

)
ξ(k)+ (IN ⊗X(k+1)B(k))u(k)+ (IN ⊗X(k+1)E(k))w(k)

− (IN ⊗M(k))z(k)− (IN ⊗T (k))w(k)− (IN ⊗G(k))y(k)+ (IN ⊗Q(k)) (y(k)− ŷ(k))

− (IN ⊗R(k+1)D(k+1))v(k+1). (18)

Implementing (5), (7) and (8) into (18), we have

eξ(k+1) = (IN ⊗M(k))eξ(k)+ (IN ⊗ (M(k)R(k)−G(k)))y(k)− (IN ⊗R(k+1)D(k+1))v(k+1)

+ (IN ⊗Q(k))
((

IN ⊗ C̄(k)
)

eξ(k)+ (IN ⊗D(k))v(k)
)
+ (IN ⊗X(k+1)E(k))w(k)

=
(
IN ⊗

(
M(k)+Q(k)C̄(k)

))
eξ(k)+ (IN ⊗Q(k)D(k))v(k)− (IN ⊗R(k+1)D(k+1))v(k+1)

+ (IN ⊗X(k+1)E(k))w(k). (19)

δ(k) =
[
wT (k) vT (k) vT (k+1)

]T
L(k) = IN ⊗

(
M(k)+Q(k)C̄(k)

)
Y(k) = [IN⊗

X(k+1)E(k) IN ⊗Q(k)D(k) − IN ⊗R(k+1)D(k+1)]
By defining variables , , and 

,  the  following  estimation  error  system  is  derived  from
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(19):

eξ(k+1) = L(k)eξ(k)+Y(k)δ(k). (20)

{Q(k)}0≤k≤T−1

ēξ(k) ≜ r(k)− r̂(k) r(k) H∞
One of the research objectives of this paper is to design the observer parameters  so that the esti-

mation error  of the controlled output  satisfies the  performance constraint defined below.
γ2 > 0 W2

{w(k),v(k)}0≤k≤T−1

H∞ (k ∈ [0,T −1])

Definition 2: Let a disturbance attenuation level  and a positive definite matrix  be given. Consider-
ing LTV MAS (2),  for any disturbance sequences ,  if  the following inequality is satisfied, then
the estimation error system (20) satisfies the  consensus performance over the finite horizon :

J1 =

T−1∑
k=0

Ä∥∥ēξ(k)
∥∥2−γ2

2∥δ(k)∥2
ä
−γ2

2

(
eξ(0)

)T (IN ⊗W2)eξ(0) < 0, ∀
(
δ(k),eξ(0)

)
, 0, (21)

ēξ(k) ēξ(k) = V(k)eξ(k)where it can be known from the definition of  that .
ec(k) =

[
ec

1(k), . . . ,ec
N(k)

]TBy denoting formation consensus error , it can be inferred that

ec(k) =
(
K ⊗ Inx

)
e f (k),

K ≜ IN − 1
N 1N1T

Nwhere . Subsequently, it readily follows that the formation consensus error system is

ec(k+1) =
(
K ⊗ Inx

)
(x(k+1)− l(k+1))

= (K ⊗A(k)) x(k)+ (K ⊗B(k))u(k)+ (K ⊗E(k))w(k)+
(
K ⊗E f (k)

)
f (k)

−
(
K ⊗ Inx

)
l(k+1).

(22)

Substituting the controller (11) into (22) yields

ec(k+1) = (K ⊗A(k)) x(k)+
(
KΛ̂(h(k))⊗B(k)K(k)

)(
e f (k)−

(
IN ⊗ Ē

)
eξ(k)

)
−
(
K ⊗B(k)K̄(k)

)
l̃(k)

−
(
K ⊗B(k)K̄(k)E f (k)Ẽ

)
ξ̂(k)+ (IN ⊗E(k))w(k)+

(
K ⊗E f (k)Ẽ

)
ξ(k)−

(
K ⊗ Inx

)
l(k+1), (23)

Λ̂(h(k)) = L⃗(ε(k))where .
Then, (23) can be further written into

ec(k+1) =
(
K ⊗A(k)+KΛ̂(h(k))⊗B(k)K(k)

)
e f (k)−

(
KΛ̂(h(k))⊗B(k)K(k)Ē

)
eξ(k)

+ (IN ⊗E(k))w(k)+ (K ⊗A(k)) l(k)−
(
K ⊗ Inx

)
l(k+1)−

(
K ⊗B(k)K̄(k)

)
l̃(k)

+
(
K ⊗E f (k)Ẽ

)
ξ(k)−

(
K ⊗B(k)K̄(k)E f (k)Ẽ

)
ξ̂(k)

=
(
K ⊗A(k)+KΛ̂(h(k))⊗B(k)K(k)

)
e f (k)+

(
K ⊗E f (k)Ẽ−KΛ̂(h(k))⊗B(k)K(k)Ē

)
eξ(k)

+ (IN ⊗E(k))w(k)+
(
K ⊗ Inx

−K ⊗B(k)K̄(k)
)(

l̃(k)+
(
IN ⊗E f (k)Ẽ

)
ξ̂(k)

)
. (24)

In terms of Lemma 3, the following equation can be obtained:
N∑

j=1

(
Λ̂(h(k))

)
i, j =

N∑
j=1

Ä
A◦ Λ⃗(k)

ä
i, j
− d⃗i(k) =

Ä
AΛ⃗T (k)

ä
i,i
−
∑
j∈Nl

ai, jλ
i
j(k) = 0, (25)

Λ̂(h(k)) Λ̂(h(k))

K = Λ̂(h(k))
which means  all  the  row-sums of  equal  to  0.  Therefore,  it  can  be  proved that  the  equation 

 holds.
On the basis of (24), it can be inferred that

ec(k+1) =
(
IN ⊗A(k)+KΛ̂(h(k))⊗B(k)K(k)

)
ec(k)+

(
K ⊗ Inx

−K ⊗B(k)K̄(k)
)

w̃(k)

+
(
K ⊗E f (k)Ẽ−KΛ̂(h(k))⊗B(k)K(k)Ē

)
eξ(k)+ (IN ⊗E(k))w(k), (26)

w̃(k) ≜ l̃(k)+
(
IN ⊗E f (k)Ẽ

)
ξ̂(k)where .

h(k)Subject to the distribution of  given by Lemma 2, one obtains

Λ̄(k) ≜ E
{
Λ̂(h(k))

}
=
∑
i∈R

p̄i(k)Λ̂(i). (27)

Λ̃(h(k)) ≜ Λ̂(h(k))− Λ̄(k)Define , then (26) can also be equivalently expressed as

ec(k+1) =
(
Ã(k)+ B̃h(k)(k)

)
ec(k)+

(
H̄(k)+ M̄h(k)(k)

)
η̄(k)+ N̄(k)w̃(k), (28)

where
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Ã(k) ≜ IN ⊗A(k)+KΛ̄(k)⊗B(k)K(k), B̃h(k)(k) ≜ KΛ̃(h(k))⊗B(k)K(k),

H̄(k) ≜
[
IN ⊗E f (k)Ẽ−KΛ̄(k)⊗B(k)K(k)Ē IN ⊗E(k)

]
, N̄(k) ≜ K ⊗ Inx

−K ⊗B(k)K̄(k),

M̄h(k)(k) ≜
[
−KΛ̃(h(k))⊗B(k)K(k)Ē 0Nnx×Nnw

]
, η̄(k) ≜

î(
eξ(k)

)T wT (k)
óT
.

K(k) K̄(k) H∞
ec(k)

eξ(k) w(k) w̃(k)

Summarizing the aforementioned discussion,  in this paper,  we aim to deal  with the problem of designing the
controller gains  and  which can ensure that the  performance is achieved for formation consensus error

. The core idea is to attenuate the effect of unknown factors including estimation errors, faults, external distur-
bances  and  changing  formation  control  targets  on  achieving  formation  consensus  of  MASs.  Recalling  the  form of
formation consensus error system (28), we treat ,  and  as unknown disturbances, and then give the
following definition:

h(k)Definition 3: For all possible realizations of the random sequence , if inequality

J2 = E

{
T−1∑
k=0

Ä
∥ēc(k)∥2−γ2

1

∥∥δ̄(k)
∥∥2
ä
−γ2

1(ec(0))T (IN ⊗W1)ec(0)

}
< 0, ∀

(
δ̄(k),e(0)

)
, 0, (29)

[0,T −1] H∞
ēc(k) =

[
ēc

1(k), · · · , ēc
N(k)

]T
δ̄(k) =

[
δ̄1(k), · · · , δ̄N(k)

]T
δ̄l(k) ≜ η̄(k)− w̃(k)

ēc
l (k) ēc(k) = V̂(k)ec(k) V̂(k) ≜ IN ⊗ V̄(k)

holds over the finite horizon , then  formation consensus is achieved for time-varying MAS (2),
where , , .  In  virtue  of  the  definition  of

 in (4), we can get that , where .

3. Main Results

In this section, the design methods of observer and controller parameters are proposed.

3.1. Observer Parameters Design
Υ Γ Σ Θ

argminΘ∥ΥΘΣ−Γ∥F Υ†ΓΣ†
Lemma 4: [47] Let , , and  be known nonzero matrices with appropriate dimensions. The solution  to

 is .

γ2 W2 =W2
T > 0

{w(k),v(k)}0≤k≤T−1 H∞{
Q(k), R̄(k)

}
0≤k≤T−1 R̄(T ) = 0

Theorem 1: Consider time-varying MAS (3) with the decentralized state observer (5),  and let  the disturbance
attenuation  level  and  the  positive  definite  matrix  be  given.  Then,  for  any  disturbance  sequence

, the augmented state estimation error system (20) satisfies the  performance defined in (21) if
there exist solutions  (with condition ) satisfying the recursive RDE:

R̄(k) = VT (k)V(k)+LT (k)R̄(k+1)L(k)+LT (k)R̄(k+1)Y(k)∆−1
1 (k)YT (k)R̄(k+1)L(k), (30)

subject to

R̄(0) < γ2
2 (IN ⊗W2) , (31)

∆1(k) ≜ γ2
2IN(2nv+nw)−YT (k)R̄(k+1)Y(k) > 0. (32)

Uξ(k) =
(
eξ(k)

)T R̄(k)eξ(k) Ψ̄1(k)Proof: Define , then defining  and considering (20) yields

Ψ̄1(k) ≜ Uξ(k+1)−Uξ(k)

=
(
L(k)eξ(k)+Y(k)δ(k)

)T R̄(k+1)
(
L(k)eξ(k)+Y(k)δ(k)

)
−
(
eξ(k)

)T R̄(k)eξ(k)

=
(
eξ(k)

)T (LT (k)R̄(k+1)L(k)− R̄(k)
)

eξ(k)+2
(
eξ(k)

)T LT (k)R̄(k+1)Y(k)δ(k)
+δT (k)YT (k)R̄(k+1)Y(k)δ(k). (33)∥∥ēξ(k)

∥∥2−γ2
2∥δ(k)∥2−

Ä∥∥ēξ(k)
∥∥2−γ2

2∥δ(k)∥2
ä

Adding the zero term  to the right side of (33), one obtains

Ψ̄1(k) =
(
eξ(k)

)T (LT (k)R̄(k+1)L(k)− R̄(k)+VT (k)V(k)
)

eξ(k)+2
(
eξ(k)

)T LT (k)R̄(k+1)Y(k)δ(k)

−δT (k)
(
γ2

2I−YT (k)R̄(k+1)Y(k)
)
δ(k)−

Ä∥∥ēξ(k)
∥∥2−γ2

2∥δ(k)∥2
ä
. (34)

By applying the completing squares method, (34) can be converted into the following form:

Ψ̄1(k) =
(
eξ(k)

)T (LT (k)R̄(k+1)L(k)− R̄(k)+VT (k)V(k)
)

eξ(k)+ δ̃T (k)∆1(k)δ̃(k)

−
(
δ(k)− δ̃(k)

)T
∆1(k)

(
δ(k)− δ̃(k)

)
−
Ä∥∥ēξ(k)

∥∥2−γ2
2∥δ(k)∥2

ä
, (35)

δ̃(k) ≜ ∆−1
1 (k)YT (k)R̄(k+1)L(k)eξ(k)where .

T kSubstituting (30) into (35) and summing up it from 0 to  with respect to  yield
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(
eξ(T )

)T R̄(T )eξ(T )−
(
eξ(0)

)T R̄(0)eξ(0)

= −
T−1∑
k=0

(
δ(k)− δ̃(k)

)T
∆1(k)

(
δ(k)− δ̃(k)

)
−

T−1∑
k=0

Ä∥∥ēξ(k)
∥∥2−γ2

2∥δ(k)∥2
ä
. (36)

Therefore, recalling (17), one obtains

J1 = −
T−1∑
k=0

(
δ(k)− δ̃(k)

)T
∆1(k)

(
δ(k)− δ̃(k)

)
+
(
eξ(0)

)T (R̄(0)−γ2
2 (IN ⊗W1)

)
eξ(0). (37)

H∞Noticing condition (31), apparently, the augmented state estimation error system (20) satisfies the  performance in
Definition 2.

{Q(k)}0≤k≤T−1

δ(k) = δ̃(k) = G̃(k)eξ(k) G̃(k) ≜ ∆−1
1 (k)YT (k)R̄(k+1)L(k)

Subsequently, to develop an approach to solve the observer parameter sequence , we consider the
worst  situation,  that  is ,  where . Then,  (20)  can  be  con-
verted into

eξ(k+1) =
(
IN ⊗M(k)+Y(k)G̃(k)

)
eξ(k)+ρξ(k), (38)

ρξ(k) =
(
IN ⊗Q(k)C̄(k)

)
eξ(k)where . Meanwhile, the following cost functional is constructed to represent the esti-

mation effect of the observer:

J3 ≜ E

{
T−1∑
k=0

Ä∥∥ēξ(k)
∥∥2
+γ3

∥∥ρξ(k)
∥∥2
ä}

, (39)

γ3where  is typically a positive scalar.
γ2

γ3 > 0 W2 H∞{
Q(k), R̄(k), P̄(k)

}
0≤k≤T−1 P̄(T ) = 0

Theorem 2: Consider singular system (3) with observer (5), and let the disturbance attenuation level , scalar
 and the positive definite matrix  be given. The state estimation error system (20) satisfies the  perfor-

mance requirement (14) if there exist solutions  (with condition ) satisfying the
recursive RDEs (30) and the following one:

P̄(k) = VT (k)V(k)+
(
IN ⊗M(k)+Y(k)G̃(k)

)T P̄(k+1)
(
IN ⊗M(k)+Y(k)G̃(k)

)
+2G̃T (k)YT (k)P̄(k+1)

(
IN ⊗Q(k)C̄(k)

)
− (IN ⊗M(k))T P̄(k+1)∆−1

2 (k)P̄(k+1)(IN ⊗M(k)) , (40)

∆2(k) ≜ γ3IN(nx+n f )+ P̄(k+1)where .
{Q(k)}0≤k≤T−1Moreover, the observer parameters  can be calculated by

Q(k) = argmin
Q(k)

∥∥IN ⊗Q(k)C̄(k)+∆−1
2 (k)P̄(k+1)(IN ⊗M(k))

∥∥
F . (41)

Ψ̄2(k) ≜ E
¶(

eξ(k+1)
)T P̄(k+1)eξ(k+1)−

(
eξ(k)

)T×
P̄(k)eξ(k)

}Proof:  Based  on  Theorem  1,  define  the  function  as 
. Combining with (38), it is easy to deduce that

Ψ̄2(k) =
(
eξ(k)

)T
Ä(

IN ⊗M(k)+Y(k)G̃(k)
)T P̄(k+1)

(
IN ⊗M(k)+Y(k)G̃(k)

)
− P̄(k)

ä
eξ(k)

+2
(
eξ(k)

)T(IN ⊗M(k)+Y(k)G̃(k)
)T P̄(k+1)ρξ(k)+

(
ρξ(k)

)T P̄(k+1)ρξ(k). (42)∥∥ēξ(k)
∥∥2
+γ3

∥∥ρξ(k)
∥∥2−
Ä∥∥ēξ(k)

∥∥2
+γ3

∥∥ρξ(k)
∥∥2
ä

Then, add zero term  to the right side of (42), and it can be
further written into

Ψ̄2(k) =
(
eξ(k)

)T
Ä(

IN ⊗M(k)+Y(k)G̃(k)
)T P̄(k+1)

(
IN ⊗M(k)+Y(k)G̃(k)

)
− P̄(k)+VT (k)V(k)

ä
× eξ(k)+2

(
eξ(k)

)T(IN ⊗M(k)+Y(k)G̃(k)
)T P̄(k+1)ρξ(k)+

(
ρξ(k)

)T (
γ3I+ P̄(k+1)

)
ρξ(k)

−
Ä∥∥ēξ(k)

∥∥2
+γ3

∥∥ρξ(k)
∥∥2
ä

=
(
eξ(k)

)T
Ä(

IN ⊗M(k)+Y(k)G̃(k)
)T P̄(k+1)

(
IN ⊗M(k)+Y(k)G̃(k)

)
− P̄(k)+VT (k)V(k)

+2
(
Y(k)G̃(k)

)T P̄(k+1)
(
IN ⊗Q(k)C̄(k)

)ä
eξ(k)+2

(
eξ(k)

)T (IN ⊗M(k))T P̄(k+1)ρξ(k)

+
(
ρξ(k)

)T (
γ3I+ P̄(k+1)

)
ρξ(k)−

Ä∥∥ēξ(k)
∥∥2
+γ3

∥∥ρξ(k)
∥∥2
ä
. (43)

It readily follows that, based on completing squares method, (43) is equivalent to
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Ψ̄2(k) =
(
eξ(k)

)T Ä(IN ⊗M(k)+Y(k)G̃(k)
)T P̄(k+1)

(
IN ⊗M(k)+Y(k)G̃(k)

)
− P̄(k)+VT (k)V(k)

+2
(
Y(k)G̃(k)

)T P̄(k+1)
(
IN ⊗Q(k)C̄(k)

)ä
eξ(k)+

(
ρξ(k)+ ρ̃ξ(k)

)T
∆2(k)

(
ρξ(k)+ ρ̃ξ(k)

)
−
(
ρ̃ξ(k)

)T
∆2(k)ρ̃ξ(k)−

Ä∥∥ēξ(k)
∥∥2
+γ3

∥∥ρξ(k)
∥∥2
ä
, (44)

ρ̃ξ(k) ≜ ∆−1
2 (k)P̄(k+1)(IN ⊗M(k))eξ(k)where .

TSubstituting (40) into (44) and summing up it from 0 to , it follows(
eξ(T )

)T P̄(T )eξ(T )−
(
eξ(0)

)T P̄(0)eξ(0)

=

T−1∑
k=0

(
ρξ(k)+ ρ̃ξ(k)

)T
∆2(k)

(
ρξ(k)+ ρ̃ξ(k)

)
−

T−1∑
k=0

Ä∥∥ēξ(k)
∥∥2
+γ3

∥∥ρξ(k)
∥∥2
ä
. (45)

Noticing the cost function (39), it follows that

J3(k) =
T−1∑
k=0

(
ρξ(k)+ ρ̃ξ(k)

)T
∆2(k)

(
ρξ(k)+ ρ̃ξ(k)

)
+
(
eξ(0)

)T P̄(0)eξ(0). (46)

ρξ(k) ρ̃ξ(k)Recalling the definitions of  and , one obtains

J3(k)≤
T−1∑
k=0

∥∥(IN ⊗Q(k))
(
IN ⊗ C̄(k)

)
+∆−1

2 (k)P̄(k+1)(IN ⊗M(k))
∥∥2

F ∥∆2(k)∥F
∥∥eξ(k)

∥∥2

+
(
eξ(0)

)T P̄(0)eξ(0). (47)

{Q(k)}0≤k≤T−1 J3

Q(k)
Apparently, the observer gain  should make the cost function  as small as possible. A method

of calculating  is given below.
IN ⊗ C̄(k) ≜

[
κT

1 (k), . . . , κT
N(k)

]T
∆−1

2 (k)P̄(k+1)(IN ⊗M(k)) ≜
[
ψT

1 (k), . . . ,ψT
N(k)

]TDenoting ,  and  considering
(41), it can be found that

Q(k) = argmin
Q(k)

∥∥IN ⊗Q(k)C̄(k)+∆−1
2 (k)P̄(k+1)(IN ⊗M(k))

∥∥
F

= argmin
Q(k)

∥∥∥∥∥∥∥∥∥


Q(k)κ1(k)+ψ1(k)
Q(k)κ2(k)+ψ2(k)

...
Q(k)κN(k)+ψN(k)


∥∥∥∥∥∥∥∥∥

F
= argmin

Q(k)

∥∥Q(k) [κ1(k), κ2(k), · · · , κN(k)]+
[
ψ1(k), ψ2(k), · · · ,ψN(k)

]∥∥
F .

Q(k)In light of Lemma 4,  can be obtained from the following equation:

Q(k) = −
[
ψ1(k), ψ2(k), · · · ,ψN(k)

]
× [κ1(k), κ2(k), · · · , κN(k)]†, (48)

H∞
Q(k)

which  is  the  solution  of  the  optimization  problem  (41).  Recalling  Theorem  1,  (20)  satisfies  the  perfor-
mance (14) under the influence of designed , and the proof is complete.

H∞
So far, we have designed the observer (5) for the augmented singular system (3), and given the conditions to

ensure that the augmented estimation error achieves the  performance given in Definition 2, thus the simultane-
ous estimation of state and fault vectors is realized. Considering the SCP, based on the above work, the following will
deal  with  the  problem  of  designing  controller  parameters  for  the  fault-tolerant  formation  consensus  controller  as
shown in (48).

3.2. Controller Parameters Design

{γ1,γ2} γ4 {W1,W2}
H∞ {Q(k), R̄(k),K(k), K̄(k),

S̄ (k)}0≤k≤T−1 S̄ (T ) = 0

Theorem 3:  Consider  MAS (3)  with  the  observer  (5)  and the  fault-tolerant controller  (10),  and let  the  distur-
bance attenuation level , the scalar  and the positive definite matrix  be given. The time-varying
system  (28)  satisfies  the  performance  requirement  (29)  if  there  exist  solutions 

 (with condition ) satisfying (30) and the following recursive RDE:

S̄ (k) = V̂T (k)V̂(k)+ ÃT (k)S̄ (k+1)Ã(k)+2Ω1(k+1)Ã(k)+Ω2(k+1)

+
(
ÃT (k)S̄ (k+1)H̄(k)+Ω1(k+1)H̄(k)+ ÃT (k)ΩT

4 (k+1)+Ω3(k+1)
)

×∆−1
3 (k)

(
ÃT (k)S̄ (k+1)H̄(k)+Ω1(k+1)H̄(k)+ ÃT (k)ΩT

4 (k+1)+Ω3(k+1)
)T

−
(
ÃT (k)S̄ (k+1)N̄(k)+Ω1(k+1)N̄(k)

)
∆−1

4 (k)
(
ÃT (k)S̄ (k+1)N̄(k)+Ω1(k+1)N̄(k)

)T
, (49)
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subject to

∆3(k) ≜ γ2
1IN(nx+n f+nw)− H̄T (k)S̄ (k+1)H̄(k)−2Ω4(k+1)H̄(k)−Ω5(k+1) > 0, (50)

∆4(k) ≜
(
γ2

1 −γ2
4

)
INnx

> 0, (51)

∆5(k) ≜ γ2
4INnx
− N̄T (k)S̄ (k+1)N̄(k) > 0, (52)

S̄ (0) < γ2
1 (IN ⊗W1) , (53)

Υ(k) ≜ 2ρ (F(k))
Ä∥∥eξ(k)

∥∥2
+ϖ2
ä 1

2 −∥w̃(k)∥≤0, (54)

where

Ω1(k+1) ≜ E
{

B̃T
h(k)(k)S̄ (k+1)

}
=
∑
i∈R

p̄i(k)B̃T
i (k)S̄ (k+1),

Ω2(k+1) ≜ E
{

B̃T
h(k)(k)S̄ (k+1)B̃T

h(k)(k)
}
=
∑
i∈R

p̄i(k)B̃T
i (k)S̄ (k+1)B̃i(k),

Ω3(k+1) ≜ E
{

B̃T
h(k)(k)S̄ (k+1)M̄h(k)(k)

}
=
∑
i∈R

p̄i(k)B̃T
i (k)S̄ (k+1)M̄i(k),

Ω4(k+1) ≜ E
{

M̄T
h(k)(k)S̄ (k+1)

}
=
∑
i∈R

p̄i(k)M̄T
i (k)S̄ (k+1),

Ω5(k+1) ≜ E
{

M̄T
h(k)(k)S̄ (k+1)M̄h(k)(k)

}
=
∑
i∈R

p̄i(k)M̄T
i (k)S̄ (k+1)M̄i(k),

F(k) ≜ ∆−1
5 (k)

(
γ2

3I+ N̄T (k)S̄ (k+1)H̄(k)+ N̄T (k)ΩT
4 (k+1)

)
.

℧e(k) = (ec(k))T S̄ (k)ec(k) ℧e(k+1)−℧e(k)Proof: Define  and calculate the expectation of  as follows:

Ψ̄3(k) ≜ E {℧e(k+1)−℧e(k)}
= E
¶((

Ã(k)+ B̃h(k)(k)
)

ec(k)+
(
H̄(k)+ M̄h(k)(k)

)
η̄(k)+ N̄(k)w̃(k)

)T S̄ (k+1)

×
((

Ã(k)+ B̃h(k)(k)
)

ec(k)+
(
H̄(k)+ M̄h(k)(k)

)
η̄(k)+ N̄(k)w̃(k)

)
− (ec(k))T S̄ (k)ec(k)

}
= E
¶

(ec(k))T(Ã(k)+ B̃h(k)(k)
)T S̄ (k+1)

(
Ã(k)+ B̃h(k)(k)

)
ec(k)+2(ec(k))T(Ã(k)+ B̃h(k)(k)

)T

× S̄ (k+1)
(
H̄(k)+ M̄h(k)(k)

)
η̄(k)+ η̄T (k)

(
H̄(k)+ M̄h(k)(k)

)T S̄ (k+1)
(
H̄(k)+ M̄h(k)(k)

)
η̄(k)

+2(ec(k))T(Ã(k)+ B̃h(k)(k)
)T S̄ (k+1)N̄(k)w̃(k)+2η̄T (k)

(
H̄(k)+ M̄h(k)(k)

)T S̄ (k+1)N̄(k)w̃(k)

+w̃T (k)N̄T (k)S̄ (k+1)N̄(k)w̃(k)− (ec(k))T S̄ (k)ec(k)
}
. (55)

Then (55) can be further written into

Ψ̄3(k) = E
{

(ec(k))T (ÃT (k)S̄ (k+1)Ã(k)+2Ω1(k+1)Ã(k)+Ω2(k+1)− S̄ (k)
)

ec(k)

+2(ec(k))T (ÃT (k)S̄ (k+1)H̄(k)+Ω1(k+1)H̄(k)+ ÃT (k)ΩT
4 (k+1)+Ω3(k+1)

)
η̄(k)

+ η̄T (k)
(
H̄T (k)S̄ (k+1)H̄(k)+2Ω4(k+1)H̄(k)+Ω5(k+1)

)
η̄(k)

+2(ec(k))T (ÃT (k)S̄ (k+1)N̄(k)+Ω1(k+1)N̄(k)
)

w̃(k)

+2η̄T (k)
(
H̄T (k)S̄ (k+1)N̄(k)+Ω4(k+1)N̄(k)

)
w̃(k)+ w̃T (k)N̄T (k)S̄ (k+1)N̄(k)w̃(k)

}
. (56)

∥ēc(k)∥2−γ2
1∥η̄(k)− w̃(k)∥2−

(
∥ēc(k)∥2−γ2

1∥η̄(k)− w̃(k)∥2
)

Adding the zero term  to (56), it follows

Ψ̄3(k) = E
{

(ec(k))T (ÃT (k)S̄ (k+1)Ã(k)+2Ω1(k+1)Ã(k)+Ω2(k+1)− S̄ (k)+ V̂T (k)V̂(k)
)

ec(k)

+2(ec(k))T (ÃT (k)S̄ (k+1)H̄(k)+Ω1(k+1)H̄(k)+ ÃT (k)ΩT
4 (k+1)+Ω3(k+1)

)
η̄(k)

− η̄T (k)
(
γ2

1I− H̄T (k)S̄ (k+1)H̄(k)−2Ω4(k+1)H̄(k)−Ω5(k+1)
)
η̄(k)

+2(ec(k))T (ÃT (k)S̄ (k+1)N̄(k)+Ω1(k+1)N̄(k)
)

w̃(k)−
(
γ2

1 −γ2
4

)
w̃T (k)w̃(k)

+2η̄T (k)
(
H̄T (k)S̄ (k+1)N̄(k)+Ω4(k+1)N̄(k)

)
w̃(k)− w̃T (k)

(
γ2

4I− N̄T (k)S̄ (k+1)N̄(k)
)

w̃(k)

−
(
∥ēc(k)∥2−γ2

1∥η̄(k)− w̃(k)∥2
)}
. (57)

Applying the completing squares method, one obtains
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Ψ̄3(k) = E
{

(ec(k))T (ÃT (k)S̄ (k+1)Ã(k)+2Ω1(k+1)Ã(k)+Ω2(k+1)− S̄ (k)+ V̂T (k)V̂(k)
)

ec(k)

+ η̃T (k)∆3(k)η̃(k)− (η̄(k)− η̃(k))T∆3(k) (η̄(k)− η̃(k))+ ŵT (k)∆4(k)ŵ(k)

− (w̃(k)− ŵ(k))T∆4(k) (w̃(k)− ŵ(k))+ w̌T (k)∆5(k)w̌(k)− (w̃(k)− w̌(k))T∆5(k) (w̃(k)− w̌(k))

−
(
∥ēc(k)∥2−γ2

1∥η̄(k)− w̃(k)∥2
)}
, (58)

where

η̃(k) ≜ F̃(k)ec(k), F̃(k) ≜ ∆−1
3 (k)

(
H̄T (k)S̄ (k+1)Ã(k)+Ω4(k+1)Ã(k)+ H̄T (k)ΩT

1 (k+1)+ΩT
3 (k+1)

)
,

ŵ(k) ≜ F̂(k)ec(k), F̂(k) ≜ ∆−1
4 (k)

(
N̄T (k)S̄ (k+1)Ã(k)+ N̄T (k)ΩT

1 (k+1)
)
, w̌(k) ≜ F(k)η̄(k).

Noticing (49), it follows from (29) that

J2 = E

{
−

T−1∑
k=0

(
(η̄(k)− η̃(k))T∆3(k) (η̄(k)− η̃(k))− (w̃(k)− ŵ(k))T∆4(k) (w̃(k)− ŵ(k))

−(w̃(k)− w̌(k))T∆5(k) (w̃(k)− w̌(k))+ w̌T (k)∆5(k)w̌(k)
)
+ (ec(0))T (S̄ (0)−γ2

1 (IN ⊗W1)
)

ec(0)
}
. (59)

η̄(k) =
î(

eξ(k)
)T wT (k)

óT
Noticing the definition of , it can be inferred that

Υ(k)≥2ρ (F(k))∥η̄(k)∥− ∥w̃(k)∥≥2∥F(k)∥ · ∥η̄(k)∥− ∥w̃(k)∥≥2∥w̌(k)∥− ∥w̃(k)∥ . (60)

2∥w̌(k)∥ · ∥w̃(k)∥− ∥w̃(k)∥2≤0 ∥w̌(k)∥2−
(∥w̃(k)∥− ∥w̌(k)∥)2≤0 (∥w̃(k)∥− ∥w̌(k)∥)2≤∥w̃(k)− w̌(k)∥2 ∥w̌(k)∥2−∥w̃(k)−
w̌(k)∥2≤0 w̌T (k)∆5(k)w̌(k)− (w̃(k)− w̌(k))T∆5(k) (w̃(k)− w̌(k))≤0

H∞ [0,T −1]

Owing  to  the  condition  (54),  we  have ,  which  is  equivalent  to 
.  Since ,  it  readily  follows  that 

,  which  indicates  that .  Therefore,  under  the
condition of (53), the  performance constraint defined by (29) is satisfied over the finite horizon . A suf-
ficient condition is established for time-varying MAS (2) achieving formation consensus, and the proof is complete.

J1 J2 H∞ (k ∈ [0,T −1])
J1 < 0

H∞ J2 < 0
H∞ H∞

J1 {Q(k)}0≤k≤T−1

J2

{
K(k), K̄(k)

}
0≤k≤T−1

Remark 3: Both  and  are  performance constraints over the finite horizon , the differ-
ence being that they are designed for different systems. Specifically, if ,  then the augmented state estimation
error system (20) satisfies the  performance constraint. If , the formation consensus error system (28) satis-
fies  the  performance constraint,  which is  equivalent  to  MAS achieving fault-tolerant  formation consensus
control. Therefore,  is used to prove Theorem 1 for solving the time-varying parameter matrices  of
the state observer (16).  And  is  used to prove Theorem 3 for solving  of  the fault-tolerant
controller (11).

H∞
{K(k)}0≤k≤T−1

In Theorem 3, we discuss the condition that the formation consensus error system (28) satisfies the  perfor-
mance by resorting to backward recursive RDEs. In order to give a solution to the controller  gain ,
rewrite (28) as follows:

ec(k+1) =
(
Ã(k)+ B̃h(k)(k)

)
ec(k)+

(
H̃(k)+ M̃h(k)(k)

)
η(k), (61)

H̃(k) ≜
[
H̄(k) N̄(k)

]
M̃h(k)(k) ≜

[
M̄h(k)(k) 0Nnx×Nnx

]
η(k) ≜

[
η̄T (k) w̃T (k)

]T

η(k) η(k) = Ṽ(k)ec(k) Ṽ(k) ≜
[
F̃T (k) F̂T (k)

]T

where , , .  Consider  the  particular
case, that is, specifying  has a special form , where .

Subsequently, from (61), the formation consensus error system in this case can be obtained:

ec(k+1) =
(
Â(k)+ H̃(k)Ṽ(k)

)
ec(k)+

(
B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)
ec(k)+ B̂(k)ρc(k), (62)

Â(k) ≜ IN ⊗A(k) B̂(k) ≜ KΛ̄(k)⊗B(k) ρc(k) = K̃(k)ec(k) K̃(k) ≜ IN ⊗K(k)where , , , .
Define the following cost functional:

J4 ≜ E

{
T−1∑
k=0

(
∥ēc(k)∥2+γ5∥ρc(k)∥2

)}
, (63)

∑T−1

k=0
∥ēc(k)∥2

∑T−1

k=0
∥ρc(k)∥2

γ5 > 0

where  represents  the  control  performance,  stands  for  the  control  effort,  and  scalar
 is selected according to special needs.

{γ1,γ2} γ5 > 0 {W1,W2}{
Q(k), R̄(k),K(k), K̄(k), S̄ (k), Ȳ(k)

}
0≤k≤T−1 Ȳ(T ) = 0

Theorem 4:  Consider  MAS (3)  with  the  observer  (5)  and  controller  (10),  and  let  the  disturbance  attenuation
level ,  the  scalar  and  the  positive  definite  matrix  be  given.  The  MAS achieves  formation
consensus if there exist solutions  [with condition ] satisfying
(30), (49) and the following recursive RDE:
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Ȳ(k) = V̂T (k)V̂(k)+
(
Â(k)+ H̃(k)Ṽ(k)

)T
Ȳ(k+1)

(
Â(k)+ H̃(k)Ṽ(k)

)
+Ω7(k+1)

+2Ω6(k+1)
(
Â(k)+ H̃(k)Ṽ(k)

)
+2ṼT (k)H̃T (k)Ȳ(k+1)B̂(k)K̃(k)

+2Ω6(k+1)B̂(k)K̃(k)− ÂT (k)Ȳ(k+1)B̂(k)∆−1
6 (k)B̂T (k)Ȳ(k+1)Â(k), (64)

subject to

∆6(k) ≜ γ5INnu
+ B̂T (k)Ȳ(k+1)B̂(k) > 0, (65)

where

Ω6(k+1) ≜ E
¶(

B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)
)T Ȳ(k+1)

©
=
∑
i∈R

p̄i(k)
(
B̃i(k)+ M̃i(k)Ṽ(k)

)T Ȳ(k+1),

Ω7(k+1) ≜ E
¶(

B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)
)T Ȳ(k+1)

(
B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)©
=
∑
i∈R

p̄i(k)
(
B̃i(k)+ M̃i(k)Ṽ(k)

)T Ȳ(k+1)
(
B̃i(k)+ M̃i(k)Ṽ(k)

)
.

Besides, the controller gain can be obtained by the following equation:

K(k) = argmin
K(k)

∥∥K̃(k)+∆−1
6 (k)B̂T (k)Ȳ(k+1)Â(k)

∥∥
F . (66)

Ψ̄4(k) ≜ E
{

(ec(k+1))T Ȳ(k+1)ec(k+1)
−(ec(k))T Ȳ(k)ec(k)

}Proof:  Similar  to  the  proof  process  of  Theorem  2,  we  define 
 based on Theorem 3, and recalling (62) yields

Ψ̄4(k) = E
¶Ä

(ec(k))T(Â(k)+ H̃(k)Ṽ(k)
)T
+ (ec(k))T(B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)T
+ (ρc(k))T B̂T (k)

ä
× Ȳ(k+1)

((
Â(k)+ H̃(k)Ṽ(k)

)
ec(k)+

(
B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)
ec(k)+ B̂(k)ρc(k)

)
−(ec(k))T Ȳ(k)ec(k)

}
= E
¶

(ec(k))T
Ä(

Â(k)+ H̃(k)Ṽ(k)
)T

Ȳ(k+1)
(
Â(k)+ H̃(k)Ṽ(k)

)
+2
(
B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)T

× Ȳ(k+1)
(
Â(k)+ H̃(k)Ṽ(k)

)
+
(
B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)T Ȳ(k+1)
(
B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)
−Ȳ(k)

)
ec(k)+2(ec(k))T

Ä(
Â(k)+ H̃(k)Ṽ(k)

)T
Ȳ(k+1)B̂(k)+

(
B̃h(k)(k)+ M̃h(k)(k)Ṽ(k)

)T

× Ȳ(k+1)B̂(k)
)
ρc(k) +(ρc(k))T B̂T (k)Ȳ(k+1)B̂(k)ρc(k)

}
. (67)

Ω6(k+1) Ω7(k+1) ∥ēc(k)∥2+γ5∥ρc(k)∥2−
(
∥ēc(k)∥2

−γ5∥ρc(k)∥2
)Noticing  the  definitions  of  and ,  add  the  zero  term 

 to (67), then it can be equivalently expressed as

Ψ̄4(k) = E
¶

(ec(k))T
Ä(

Â(k)+ H̃(k)Ṽ(k)
)T

Ȳ(k+1)
(
Â(k)+ H̃(k)Ṽ(k)

)
+2Ω6(k+1)

(
Â(k)+ H̃(k)Ṽ(k)

)
+Ω7(k+1)− Ȳ(k)+2ṼT (k)H̃T (k)Ȳ(k+1)B̂(k)K̃(k)+2Ω6(k+1)B̂(k)K̃(k)+ V̂T (k)V̂(k)

)
ec(k)

+(ρc(k)+ ρ̃c(k))T∆6(k) (ρc(k)+ ρ̃c(k))− (ρ̃c(k))T∆6(k)ρ̃c(k)−
(
∥ēc(k)∥2+γ5∥ρc(k)∥2

)}
, (68)

ρ̃c(k) ≜ ∆−1
6 (k)B̂T (k)Ȳ(k+1)Â(k)ec(k)where .

Subsequently, it follows from (64) and the cost functional (63) that

J4 =

{
T−1∑
k=0

(
(ρc(k)+ ρ̃c(k))T∆6(k) (ρc(k)+ ρ̃c(k))

)
+ (ec(0))T Ȳ(0)ec(0)

}

≤
T−1∑
k=0

¶∥∥K̃(k)+∆−1
6 (k)B̂T (k)Ȳ(k+1)Â(k)

∥∥2
F ∥∆6(k)∥F∥ec(k)∥2+

(
eξ(0)

)T Ȳ(0)eξ(0)
©
. (69)
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Algorithm I: Fault-tolerant formation consensus controller algorithm.

{γ1,γ2,γ4} {γ3,γ5} > 0 {W1,W2} k = T −1 R̄(T ) = P̄(T )
= S̄ (T ) = Ȳ(T ) = 0

Step 1. Let scalars ,  and positive definite matrix  be given. Set , and 
            .

Q(k) ∆1(k) ∆1(k) > 0Step 2. Calculate  by (48), then compute  by (32). If , then go to the next step, else jump to Step 7.

R̄(k) P̄(k)Step 3. Solve the backward RDEs (30) and (40) to get  and , respectively.

∆6(k) ∆6(k) > 0 K(k)Step 4. Compute  by (65). If , then calculate  by (70), else jump to Step 7.
∆3(k) Υ(k) ∆3(k) > 0 Υ(k) ≤ 0 K̄(k)Step 5. Compute  and  respectively by (50) and (54). If  and , compute  satisfying (52), else jump to

            Step 7.
S̄ (k) Ȳ(k) k , 0 k = k−1Step 6. Solve the backward RDEs (49) and (64) to get  and , respectively. If , then set  and go back to Step 2, else

            go to the next step.
{∆1(k),∆3(k),∆6(k)} > 0,Υ(k) ≤ 0, R̄(0) < γ2

2 (IN ⊗W2) S̄ (0) < γ2
1 (IN ⊗W1)Step 7. If conditions  and  are not satisfied, this algorithm is

            infeasible. Stop.
 

K(k)
J4 K̃(k) = IN ⊗K(k)

Q(k)

According  to  the  definition  of  cost  functional  in  (63),  the  controller  gain  obtained  by  (66)  is  the  best
choice to suppress . Considering that  has a special structure, similar to the calculation method of
observer gain , we introduce the notation

INnx
≜
[
µT

1 (k), µT
2 (k), · · · ,µT

N(k)
]T
,∆−1

6 (k)B̂T (k)Ȳ(k+1)Â(k) ≜
[
σT

1 (k), σT
2 (k), · · · ,σT

N(k)
]T
.

K(k)It readily follows from Lemma 4 that  can be obtained by

K(k) = − [σ1(k), σ2(k), · · · ,σN(k)]×
[
µ1(k), µ2(k), · · · ,µN(k)

]†
. (70)

Recalling Theorem 3, it can be seen that under the effect of fault-tolerant controller (11), the MAS can achieve
the formation consensus defined in Definition 3.

Based on the above analysis, the finite-horizon fault-tolerant formation consensus control design algorithm can
be summarized.

4. Illustrative Example

H∞
In this section, a numerical example is provided to validate the effectiveness of the developed scheme of dis-

tributed  fault-tolerant formation consensus controller design. Consider a time-varying MAS that consists of five
agents, and the dynamics of agents are modelled as (2) with following parameters:

A(k) =
ï
0.99+0.05cos(0.4k) −0.45

−0.10 −0.73−0.1cos(0.5k)

ò
,B(k) =

ï
0.2−0.05sin(0.3k)

0.2

ò
,E(k) =

[
0.06 0.24

]T
,

E f (k) =
[
1 1

]T
,C(k) =

[
0.105 0.082

]
,D(k) = −0.3,F f (k) = 1, V̄(k) = 0.0015I.

GIn the simulation, it is assumed that the topology of MAS is denoted by a directed graph  shown in Figure 2
with all the edge weight as 1. Assume that the following faults occur simultaneously on agents 1 and 3:

f1(k) =

®
0, k < 85
−0.3sin(0.1k+10) , otherwise,

f3(k) =

®
0, k < 85
0.4, otherwise,

fl(k) = 0, l = 2,4,5.

{wl(k),vl(k)} (l = 1,2, · · · ,5) wl(k) = 0.05(sin(bw
l k)+

cos(cw
l k)) vl(k) = 0.05

(
sin(bv

l k)+ cos(cv
l k)
) {

bw
l ,c

w
l ,b

v
l ,c

v
l

}
(l = 1,2, · · · ,5)

[0 2] T = 161 γ1 = 0.8
γ2 = 0.5 γ3 = 0.01 γ4 = 0.75 γ5 = 0.1 W1 =W2 = 9.875I
x(0) x(0) = [2.8 1.6 4.6 −0.2 −0.8 −3.8 0.1−0.2 2.8 −2.9]

l(k) = [0.2 0 0.4 0 0.6 0 0.8 0 1 0]T pi
l(k) i l

k{
Q(k),K(k), K̄(k)

}
0≤k≤T−1

The  disturbance  input  are  respectively  selected  as 
 and ,  where  are  sequences which obey

uniform  distribution  over .  In  this  simulation  example,  we  set  the  time  horizon ,  scalars ,
, , , ,  and  positive  definite  matrices ,  and  the  initial  values

 is chosen as . Specify the reference formation matrix
by . Assume that the probability  of agent  transmitting data to agent  at
the  discrete  time  is  shown  in Table  1.  In  accordance  with  Algorithm  1,  the  observer  and  controller  parameters

 are respectively listed in Table 2.
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1

52

3 4

GFigure 2.  Directed communication graph .
 
 

Table 1    The probability of transmitting data between agents

pi
l(k) l = 1 l = 2 l = 3 l = 4 l = 5

i = 1 0 0.4 0.6 0 0

i = 2 0.5 0 0.5 0 0

i = 3 0 0.4 0 0.3 0.3

i = 4 0.4 0 0.3 0 0.3

i = 5 0.2 0.3 0 0.5 0

 
 {

Q(k),K(k), K̄(k)
}

0≤k≤T−1Table 2    Observer and controller parameters 

k 1 2 3 4 5 · · ·

Q(k)

ñ−0.0030
−0.0026
0.0013

ô ñ−0.0028
−0.0022
0.0011

ô ñ−0.0026
−0.0019
0.0009

ô ñ−0.0024
−0.0018
0.0009

ô ñ−0.0023
−0.0018
0.0010

ô
· · ·

K(k)
[

0.8635 −0.2155
] [

0.7099 −0.1780
] [

0.5806 −0.1485
] [

0.4849 −0.1281
] [

0.4253 −0.1169
]

· · ·

K̄(k)
[

2.5000 2.5000
] [

2.4627 2.6915
] [

2.4713 2.8775
] [

2.4418 3.0364
] [

2.4145 3.1481
]

· · ·

 

k = 85 ex
i (k), i = 1,2,3,4,5 ex,(1)

i

ex,(2)
i ex

i (k) fi(k), i =
1,2,3,4,5 f̂i(k), i = 1,3

The simulation results are presented in Figures 3-8, where the red dash dotted lines indicate the discrete time
when faults occur, i.e., .  The state estimation errors  are shown in Figure 3, where 
and  represent  two  first-order  components  of ,  respectively.  And Figure  4 depicts  the  faults 

, and the fault estimations . In order to demonstrate the effectiveness of the proposed fault-tol-
erant formation consensus controller (11), we compare it  with the formation consensus controller without the time-
varying fault compensation term, i.e.,
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ũ(k) ≜ (IN ⊗K(k))
Ä

L⃗(ε(k))⊗ Inx

ä(
e f (k)−

(
IN ⊗ Ē

)
eξ(k)

)
−
(
IN ⊗ K̄(k)

)
l̃(k),

xi(k), i = 1,2,3,4,5 u(k)
ũ(k)

and the state trajectories  of agents by using the developed controller  given by (11) and
 are shown in Figures 5 and 6.

k < 85 u(k) ũ(k)
ec

i (k), i = 1,2,3,4,5,

H∞
H∞

Obviously,  when ,  both  and  can  make MAS achieve  the  formation  consensus  control  well.
Moreover, the corresponding formation consensus errors  are depicted by Figures 7 and 8, which
clearly reveal that, the proposed fault-tolerant controller (11), compared with the one without time-varying fault com-
pensation term, can significantly suppress the effect of the faults on  formation consensus. It can be seen that the
simulation results verify the validity and feasibility of the proposed fault-tolerant  control scheme.
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5. Conclusions

H∞

In  this  paper,  the  problem  of  finite-horizon  fault-tolerant  distributed  formation  consensus  control  has  been
addressed for a LTV MAS with SCP. To this end, a singular system has been constructed by augmenting the state
and fault of the system into a new vector, and a decentralized observer has been designed. A sufficient condition for
the existence of observers has been given to ensure that the state estimation error system satisfies the given  per-
formance constraint. By resorting to describing the scheduling behavior of the SCP by a stochastic variable sequence,
the closed-loop MAS has been modeled as a time-varying system with stochastic parameter matrices.  Utilizing the
obtained state and fault information, fault-tolerant distributed formation consensus controllers have been constructed,
which can suppress the adverse effects mainly induced by faults and external disturbances. In addition, a sufficient
condition has been given to ensure that the MAS achieves formation consensus, and the parameters of the controller
have been obtained by solving two coupled backward recursive RDEs. Finally, an illustrative example has been pre-
sented to validate the feasibility and effectiveness of the developed methods.
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