Downloads

Chen, Y., Yan, E., & Xia, Y. Noble-Metal Nanocrystals: From Synthesis to Biomedical Applications. Materials and Interfaces. 2025. doi: https://doi.org/10.53941/mi.2025.100006

Perspective

Noble-Metal Nanocrystals: From Synthesis to Biomedical Applications

Yidan Chen 1, Emily Yan 2, and Younan Xia 2,*

1 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

2 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA

* Correspondence: younan.xia@bme.gatech.edu

Received: 24 February 2025; Accepted: 26 February 2025; Published: 28 February 2025

Abstract: Noble metals hold promises for a variety of biomedical applications due to their unique physical and biochemical properties. To unlock this potential, a significant amount of research has been dedicated to the controlled synthesis of noble-metal nanocrystals over the past two decades, with a particular emphasis on the production of Au and Ag nanocrystals with diverse and well-controlled shapes. The successful synthesis of noble-metal nanocrystals with tunable sizes, shapes, and morphologies allows researchers to explore their use in a range of biomedical applications, including contrast enhancement for an array of bioimaging modalities, facilitating stimuli-responsive drug delivery, and functioning as antimicrobial or anticancer agents.

Keywords:

noble metals nanocrystal synthesis biomedical applications

References

  1. Cho, E.C.; Glaus, C.; Chen, J.; Welch, M.J.; Xia, Y. Inorganic Nanoparticle-Based Contrast Agents for Molecular Imaging. Trends Mol. Med. 2010, 16, 561–573. https://doi.org/10.1016/j.molmed.2010.09.004.
  2. Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. Chem. Rev. 2015, 115, 10410–10488. https://doi.org/10.1021/acs.chemrev.5b00193.
  3. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem., Int. Ed. 2009, 48, 60–103. https://doi.org/10.1002/anie.200802248.
  4. Nguyen, Q.N.; Wang, C.; Shang, Y.; Janssen, A.; Xia, Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem. Rev. 2022, 123, 3693–3760. https://doi.org/10.1021/acs.chemrev.2c00468.
  5. Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948. https://doi.org/10.1021/ja074447k.
  6. Zheng, Y.; Ma, Y.; Zeng, J.; Zhong, X.; Jin, M.; Li, Z.-Y.; Xia, Y. Seed-Mediated Synthesis of Single-Crystal Gold Nanospheres with Controlled Diameters in the Range 5–30 nm and their Self-Assembly upon Dilution. Chem. Asian J. 2013, 8, 792–799. https://doi.org/10.1002/asia.201201105.
  7. Zheng, Y.; Zhong, X.; Li, Z.; Xia, Y. Successive, Seed-Mediated Growth for the Synthesis of Single-Crystal Gold Nanospheres with Uniform Diameters Controlled in the Range of 5–150 nm. Part. Part. Syst. Charact. 2014, 31, 266–273. https://doi.org/10.1002/ppsc.201300256.
  8. Huo, D.; Kim, M.J.; Lyu, Z.; Shi, Y.; Wiley, B.J.; Xia, Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem. Rev. 2019, 119, 8972–9073. https://doi.org/10.1021/acs.chemrev.8b00745.
  9. Wang, Y.; Zheng, Y.; Huang, C.Z.; Xia, Y. Synthesis of Ag Nanocubes 18–32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility. J. Am. Chem. Soc. 2013, 135, 1941–1951. https://doi.org/10.1021/ja311503q.
  10. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298, 2176–2179. https://doi.org/10.1126/science.1077229.
  11. Zhang, Q.; Li, W.; Wen, L.-P.; Chen, J.; Xia, Y. Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor. Chem. Eur. J. 2010, 16, 10234–10239. https://doi.org/10.1002/chem.201000341.
  12. Siekkinen, A.R.; McLellan, J.M.; Chen, J.; Xia, Y. Rapid Synthesis of Small Silver Nanocubes by Mediating Polyol Reduction with a Trace Amount of Sodium Sulfide or Sodium Hydrosulfide. Chem. Phys. Lett. 2006, 432, 491–496. https://doi.org/10.1016/j.cplett.2006.10.095.
  13. Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Lett. 2004, 4, 1733–1739. https://doi.org/10.1021/nl048912c.
  14. Lyu, Z.; Shang, Y.; Xia, Y. Shape-Controlled Synthesis of Copper Nanocrystals for Plasmonic, Biomedical, and Electrocatalytic Applications. Acc. Mater. Res. 2022, 3, 1137–1148. https://doi.org/10.1021/accountsmr.2c00134.
  15. Lyu, Z.; Xie, M.; Aldama, E.; Zhao, M.; Qiu, J.; Zhou, S.; Xia, Y. Au@Cu Core–Shell Nanocubes with Controllable Sizes in the Range of 20–30 nm for Applications in Catalysis and Plasmonics. ACS Appl. Nano Mater. 2019, 2, 1533–1540. https://doi.org/10.1021/acsanm.9b00016.
  16. Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; Garcia de Abajo, F.J.; Fery, A.; Liz-Marzan, L.M. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Lett. 2015, 15, 5427–5437. https://doi.org/10.1021/acs.nanolett.5b01833
  17. Yang, M.; Wang, W.; Qiu, J.; Bai, M.-Y.; Xia, Y. Direct Visualization and Semi-Quantitative Analysis of Payload Loading in the Case of Gold Nanocages. Angew. Chem. Int. Ed. 2019, 58, 17671–17674. https://doi.org/10.1002/anie.201911163
  18. Qiu, J.; Xie, M.; Wu, T.; Qin, D.; Xia, Y. Gold Nanocages for Effective Photothermal Conversion and Related Applications. Chem. Sci. 2020, 11, 12955–12973. https://doi.org/10.1039/D0SC05146B.
  19. Mieszawska, A.J.; Mulder, W.J.; Fayad, Z.A.; Cormode, D.P. Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease. Mol. Pharmaceutics 2013, 10, 831–847. https://doi.org/10.1021/mp3005885.
  20. Gnoth, C.; Johnson, S. Strips of Hope: Accuracy of Home Pregnancy Tests and New Developments. Geburtshilfe Frauenheilkd. 2014, 74, 661–669. https://doi.org/10.1055/s-0034-1368589.
  21. Wikipedia: Pregnancy Test. Available online: https://en.wikipedia.org/wiki/Pregnancy_test#/media/File:Pregnancy_Test_Positive.jpg (accessed on 22 February 2025).
  22. Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 7617–7627. https://doi.org/10.1021/acsnano.0c03822.
  23. Cobley, C.M.; Chen, J.; Cho, E.C.; Wang, L.V.; Xia, Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56. https://doi.org/10.1039/B821763G.
  24. Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications. Chem. Soc. Rev. 2006, 35, 1084–1094. https://doi.org/10.1039/b517615h
  25. Li, W.; Brown, P.K.; Wang, L.V.; Xia, Y. Gold Nanocages as Contrast Agents for Photoacoustic Imaging. Contrast Media Mol. Imaging 2011, 6, 370–377. https://doi.org/10.1002/cmmi.439
  26. Kim, C.; Cho, E.C.; Chen, J.; Song, K.H.; Au, L.; Favazza, C.; Zhang, Q.; Cobley, C.M.; Gao, F.; Xia, Y. In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages. ACS Nano 2010, 4, 4559–4564. https://doi.org/10.1021/nn100736c.
  27. Yavuz, M.S.; Cheng, Y.; Chen, J.; Cobley, C.M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K.H.; Schwartz, A.G.; et al. Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light. Nat. Mater. 2009, 8, 935–939. https://doi.org/10.1038/nmat2564.
  28. Shen, S.; Zhu, C.; Huo, D.; Yang, M.; Xue, J.; Xia, Y. A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells. Angew. Chem., Int. Ed. 2017, 56, 8801–8804. https://doi.org/10.1002/anie.201702898.
  29. Das, M.R.; Sarma, R.K.; Saikia, R.; Kale, V.S.; Shelke, M.V.; Sengupta, P. Synthesis of Silver Nanoparticles in an Aqueous Suspension of Graphene Oxide Sheets and Its Antimicrobial Activity. Colloids Surf. B 2011, 83, 16–22. https://doi.org/10.1016/j.colsurfb.2010.10.033.
  30. Schlücker, S. SERS Microscopy: Nanoparticle Probes and Biomedical Applications. ChemPhysChem 2009, 10, 1344–1354. https://doi.org/10.1002/cphc.200900119.
  31. Zhao, Y.; Sultan, D.; Detering, L.; Cho, S.; Sun, G.; Pierce, R.; Wooley, K.L.; Liu, Y. Copper-64-Alloyed Gold Nanoparticles for Cancer Imaging: Improved Radiolabel Stability and Diagnostic Accuracy. Angew. Chem. Int. Ed. 2013, 53, 156–159. https://doi.org/10.1002/ange.201308494.
  32. Yang, M.; Huo, D.; Gilroy, K.D.; Sun, X.; Sultan, D.; Luehmann, H.; Detering, L.; Li, S.; Qin, D.; Liu, Y.; et al. Facile Synthesis of 64Cu-Doped Au Nanocages for Positron Emission Tomography Imaging. ChemNanoMat 2017, 3, 44–50. https://doi.org/10.1002/cnma.201600281.
  33. Brown, A.L.; Winter, H.; Goforth, A.M.; Sahay, G.; Sun, C. Facile Synthesis of Ligand-Free Iridium Nanoparticles and Their In Vitro Biocompatibility. Nanoscale Res. Let. 2018, 13, 1–6. https://doi.org/10.1186/s11671-018-2621-3.
  34. Xia, H.; Li, F.; Hu, X.; Park, W.; Wang, S.; Jang, Y.; Du, Y.; Baik, S.; Cho, S.; Kang, T. pH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma. ACS Cent. Sci. 2016, 2, 802–811. https://doi.org/10.1021/acscentsci.6b00197.