Additional Files

Yates, T. ., Henson, J., Sargeant, J., King, J. A., Ahmad, E., Zaccardi, F., & Davies, M. J. (2021). Exercise, Pharmaceutical Therapies and Type 2 Diabetes: Looking beyond Glycemic Control to Whole Body Health and Function. Translational Medicine and Exercise Prescription, 1(1), 33–42. https://doi.org/10.53941/tmep.v1i1.33

Exercise, Pharmaceutical Therapies and Type 2 Diabetes: Looking beyond Glycemic Control to Whole Body Health and Function

Thomas Yates()1,2, Joseph Henson1,2, Jack Sargeant1,2, James A King2,4, Ehtasham Ahmad1, Francesco Zaccardi1,3 and Melanie J Davies1,2 

1Diabetes Research Center, University of Leicester, Leicester General Hospital, Leicester, LE5 4PW, UK

2NIHR Leicester Biomedical Research Center, University Hospitals of Leicester NHS Trust and University of Leicester, UK

3Leicester Real World Evidence Unit, Diabetes Research Center, University of Leicester, Leicester, UK

4National Center for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK

© The Authors


 

Abstract

Exercise is a powerful therapy for improving glycemic control and increasing cardiorespiratory fitness in adults with type 2 diabetes mellitus (T2DM). However, there is a dearth of evidence investigating interactions or synergies between exercise and most pharmaceutical therapies. This is important as exercise is rarely prescribed in isolation of other background medications used to manage T2DM. Therefore understanding which exercise and drug combinations optimize or blunt responses is crucial. This narrative review discusses advances in weight loss management in diabetes and highlights research opportunities and challenges for combining exercise therapies with newer generations of glucose-lowering therapies with weight loss effects, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is). We discuss the role of exercise in preserving lean mass and increasing physical function along with other potential areas of synergy. We conclude that until the evidence base investigating areas of interaction or synergy between exercise and other glucose-lowering or weight loss therapies is developed, exercise will remain a generic rather than a tailored therapy in the management of T2DM. 

exercise type 2 diabetes glucose-lowering therapies weight loss physical function

References

  1. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001, 286(10): 1218-27. http://doi.org/10.1001/jama.286.10.1218
  2. Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, Gross JL, Ribeiro JP, Schaan BD. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 2011, 5(17): 1790-99. http://doi.org/10.1001/jama.2011.576
  3. Yang Z, Scott CA, Mao C, Tang J, Farmer AJ. Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports Med 2014, 44(4): 487-99. http://doi.org/10.1007/s40279-013-0128-8
  4. Pan B, Ge L, Xun YQ, Chen YJ, Gao CY, Han X, Zuo LQ, Shan HQ, Yang KH, Ding GW, Tian JH. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act 2018, 15(1): 72. http://doi.org/10.1186/s12966-018-0703-3
  5. Grace A, Chan E, Giallauria F, Graham PL, Smart NA. Clinical outcomes and glycemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 2017, 16(1): 37. http://doi.org/10.1186/s12933-017-0518-6
  6. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 2016, 39(11): 2065-79. http://doi.org/10.2337/dc16-1728
  7. Smyth S, Heron A. Diabetes and obesity: the twin epidemics. Nat Med 2006, 12(1): 75-80. http://doi.org/10.1038/nm0106-75
  8. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomized trial. Lancet 2018, 391(10120): 541-51. http://doi.org/10.1016/S0140-6736(17)33102-1
  9. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomized trial. Lancet Diabetes Endocrinol 2019, 7(5): 344-55. http://doi.org/10.1016/s2213-8587(19)30068-3
  10. Madsen LR, Baggesen LM, Richelsen B, Thomsen RW. Effect of roux-en-Y gastric bypass surgery on diabetes remission and complications in individuals with type 2 diabetes: A danish population-based matched cohort study. Diabetologia 2019, 62(4): 611-20. http://doi.org/10.1007/s00125-019-4816-2
  11. Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 2014, 311(22): 2297-304. http://doi.org/10.1001/jama.2014.5988
  12. Diabetes UK. https://www.diabetes.org.uk/about_us/news/nhs-type2-remission-pilot Updated 2018. Accessed Sept 22, 2019
  13. Wang H, Yang J, Chen X, Qiu F, Li J. Effects of sodium-glucose cotransporter 2 inhibitor monotherapy on weight changes in patients with type 2 diabetes mellitus: a Bayesian Network Meta-analysis. Clin Therapeut 2019, 41(2): 322-34. http://doi.org/10.1016/j.clinthera.2019.01.001
  14. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomized controlled trials. BMJ 2012, 344: d7771. http://doi.org/10.1136/bmj.d7771
  15. Ryan D, Acosta A. GLP‐1 receptor agonists: Nonglycemic clinical effects in weight loss and beyond. Obesity 2015, 23(6): 1119-29. http://doi.org/10.1002/oby.21107
  16. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018, 61(12): 2461-98. http://doi.org/10.2337/dci18-0033
  17. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjøth TV, Andreasen AH, Jensen CB, DeFronzo RA. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA 2015, 314(7): 687-99. http://doi.org/10.1001/jama.2015.9676
  18. Kushner RF, Calanna S, Davies M, Dicker D, Garvey WT, Goldman B, Lingvay I, Thomsen M, Wadden TA, Wharton S, Wilding JP. Semaglutide 2.4 mg for the Treatment of Obesity: Key Elements of the STEP Trials 1 to 5. Obesity 2020, 28(6): 1050-61. http://doi.org/10.1002/oby.22794
  19. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Furtado RHM, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation 2019, 139(17): 2022-31. http://doi.org/10.1161/circulationaha.118.038868
  20. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomized placebo-controlled trial. Lancet 2019, 394(10193): 121-30. http://doi.org/10.1016/S0140-6736(19)31149-3
  21. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393(10166): 31-39. http://doi.org/10.1016/S0140-6736(18)32590-X
  22. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New Engl J Med 2019, 380(24): 2295-306. http://doi.org/10.1056/NEJMoa1811744
  23. Pollock C, Stefansson B, Reyner D, Rossing P, Sjostrom CD, Wheeler DC, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2019, (6): 429-41. http://doi.org/10.1016/S2213-8587(19)30086-5
  24. Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological aging: links among adipose tissue dysfunction, diabetes, and frailty. Physiology 2017, 32(1): 9-19. http://doi.org/10.1152/physiol.00012.2016
  25. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001, 56: M146–56. http://doi.org/10.1093/gerona/56.3.M146
  26. Cunha AI, Veronese N, de Melo Borges S, Ricci NA. Frailty as a predictor of adverse outcomes in hospitalized older adults: a systematic review and meta-analysis. Ageing Res Rev 2019, 56: 100960. http://doi.org/10.1016/j.arr.2019.100960
  27. Ensrud KE, Kats AM, Schousboe JT, Taylor BC, Vo TN, Cawthon PM, Hoffman AR, Langsetmo L, Osteoporotic Fractures in Men Study (MrOS). Frailty Phenotype and Healthcare Costs and Utilization in Older Men. J Am Geriat Soc 2020, 68(9): 2034-42. http://doi.org/10.1111/jgs.16522
  28. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 2018, 3(7): e323-32. http://doi.org/10.1016/S2468-2667(18)30091-4
  29. García-Nogueras I, Aranda-Reneo I, Peña-Longobardo LM, Oliva-Moreno J, Abizanda P. Use of health resources and healthcare costs associated with frailty: The FRADEA study. J Nutr Health Aging 2017, 21(2): 207-14. http://doi.org/10.1007/s12603-016-0727-9
  30. Bock JO, König HH, Brenner H, Haefeli WE, Quinzler R, Matschinger H, Saum KU, Schöttker B, Heider D. Associations of frailty with health care costs–results of the ESTHER cohort study. BMC Health Serv Res 2016, 16(1): 128. http://doi.org/10.1186/s12913-016-1360-3
  31. Langholz PL, Strand BH, Cook S, Hopstock LA. Frailty phenotype and its association with all‐cause mortality in community‐dwelling Norwegian women and men aged 70 years and older: The Tromsø Study 2001–2016. Geriatr Gerontol Int 2018, 18(8): 1200-205. http://doi.org/10.1111/ggi.13447
  32. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 2018, 3(7): e323-32. http://doi.org/10.1016/S2468-2667(18)30091-4
  33. Chao CT, Wang J, Chien KL. Both pre-frailty and frailty increase healthcare utilization and adverse health outcomes in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2018, 17(1): 130. http://doi.org/10.1186/s12933-018-0772-2
  34. Veronese N, Cereda E, Stubbs B, Solmi M, Luchini C, Manzato E, Sergi G, Manu P, Harris T, Fontana L, Strandberg T. Risk of cardiovascular disease morbidity and mortality in frail and pre-frail older adults: Results from a meta-analysis and exploratory meta-regression analysis. Ageing Res Rev 2017, 35: 63-73. http://doi.org/10.1016/j.arr.2017.01.003
  35. Hanlon P, Fauré I, Corcoran N, Butterly E, Lewsey J, McAllister D, Mair FS. Frailty measurement, prevalence, incidence, and clinical implications in people with diabetes: a systematic review and study-level meta-analysis. Lancet Healthy Longevity 2020. http://doi.org/10.1016/S2666-7568(20)30014-3
  36. Sinclair AJ, Abdelhafiz A, Dunning T, Izquierdo M, Vellas B. An international position statement on the management of frailty in diabetes mellitus: Summary of recommendations 2017. J Frailty Aging 2018, 7(1): 10-20. http://doi.org/10.14283/jfa.2017.39
  37. Sinclair A, Dunning T, Rodriguez-Manas L. Diabetes in older people: New insights and remaining challenges. Lancet Diabetes Endocrinol 2015, 3(4): 275-85. http://doi.org/10.1016/S2213-8587(14)70176-7
  38. Mickute M, Henson J, Rowlands AV, Sargeant JA, Webb D, Hall AP, Edwardson CL, Baldry EL, Brady EM, Khunti K, Davies MJ. Device‐measured physical activity and its association with physical function in adults with type 2 diabetes mellitus. Diabetic Med 2020. http://doi.org/10.1111/dme.14393
  39. Wang M, Tan Y, Shi Y, Wang X, Liao Z, Wei P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front Endocrinol 2020. https://doi.org/10.3389/fendo.2020.00568
  40. Houston DK, Leng X, Bray GA, Hergenroeder AL, Hill JO, Jakicic JM, Johnson KC, Neiberg RH, Marsh AP, Rejeski WJ, Kritchevsky SB. A long‐term intensive lifestyle intervention and physical function: The look AHEAD Movement and Memory Study. Obesity 2015, 23(1): 77-84. http://doi.org/10.1002/oby.20944
  41. Heymsfield SB, Gonzalez MC, Shen W, Redman L, Thomas D. Weight loss composition is one‐fourth fat‐free mass: a critical review and critique of this widely cited rule. Obesity Rev 2014, 15(4): 310-21. http://doi.org/10.1111/obr.12143
  42. Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 2016, 23: 591-601. http://doi.org/10.1016/j.cmet.2016.02.005
  43. Pownall HJ, Bray GA, Wagenknecht LE, Walkup MP, Heshka S, Hubbard VS, Hill J, Kahn SE, Nathan DM, Schwartz AV, Johnson KC. Changes in body composition over 8 years in a randomized trial of a lifestyle intervention: the look AHEAD study. Obesity 2015, 23(3): 565-72. http://doi.org/10.1002/oby.21005
  44. Sargeant JA, Henson J, King JA, Yates T, Khunti K, Davies MJ. A review of the effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on lean body mass in humans. Endocrinol Metab 2019, 34(3): 247-62. http://doi.org/10.3803/EnM.2019.34.3.247
  45. Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 2012, 40: 4-12. http://doi.org/10.1097/JES.0b013e31823b5f13
  46. Sharma B, Dabur R. Role of Pro-inflammatory cytokines in regulation of skeletal muscle metabolism: A systematic review. Cur Med Chem 2020, 27(13): 2161-88. http://doi.org/10.2174/0929867326666181129095309
  47. Lundell LS, Massart J, Altıntaş A, Krook A, Zierath JR. Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle. Mol Metab 2019, 20: 79-88. http://doi.org/10.1016/j.molmet.2018.09.011
  48. Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Investig 2017, 127(1): 43-54. http://doi.org/10.1172/JCI88880
  49. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wires Syst Biol Med 2020, 12(1): e1462. http://doi.org/10.1002/wsbm.1462
  50. Forbes GB. Longitudinal changes in adult fat-free mass: influence of body weight. Am J Clin Nutr 1999, 70: 1025-31. http://doi.org/10.1093/ajcn/70.6.1025
  51. Kyle UG, Melzer K, Pichard C, Picard-Kossovsky M, Kayser B, Gremion G. Eight-Year Longitudinal Changes in Body Composition in Healthy Swiss Adults. J Am Coll Nutr 2006, 25: 493-501. http://doi.org/10.1080/07315724.2006.10719564
  52. Fantin F, Francesco VD, Fontana G, Zivelonghi A, Bissoli L, Zoico E, Rossi A, Micciolo R, Bosello O, Zamboni M. Longitudinal body composition changes in old men and women: interrelationships with worsening disability. J Gerontol Series A: Biol Sci Med Sci 2007, 62(12): 1375-81. http://doi.org/10.1093/gerona/62.12.1375
  53. Mitchell WK, Atherton PJ, Williams J, Larvin M, Lund JN, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 2012, 3: 260. http://doi.org/10.3389/fphys.2012.00260
  54. Santanasto AJ, Goodpaster BH, Kritchevsky SB, Miljkovic I, Satterfield S, Schwartz AV, Cummings SR, Boudreau RM, Harris TB, Newman AB. Body composition remodeling and mortality: the health aging and body composition study. J Gerontol: Series A 2017, 72(4): 513-19. http://doi.org/10.1093/gerona/glw163
  55. Weiss EP, Jordan RC, Frese EM, Albert SG, Villareal DT. Effects of weight loss on lean mass, strength, bone, and aerobic capacity. Med Sci Sports Exerc 2017, 49(1): 206. http://doi.org/10.1249/MSS.0000000000001074
  56. Booth FW, Gordon SE, Carlson CJ, Hamilton MT. Waging war on modern chronic diseases: primary prevention through exercise biology. J Appl Physiol 2000, 88(2): 774-87. http://doi.org/10.1152/jappl.2000.88.2.774
  57. Tseng BS, Marsh DR, Hamilton MT, Booth FW. Strength and aerobic training attenuate muscle wasting and improve resistance to the development of disability with aging. J Gerontol Biol Sci Med Sci 1995, 50: 113-19. http://doi.org/10.1093/gerona/50a.special_issue.113
  58. Booth FW, Thomason DB. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 1991, 71(2): 541-85. http://doi.org/10.1152/physrev.1991.71.2.541
  59. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011, 43(7): 1334-59. http://doi.org/10.1249/mss.0b013e318213fefb
  60. Villareal DT, Aguirre L, Gurney AB, Waters DL, Sinacore DR, Colombo E, et al. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. New Engl J Med 2017, 376: 1943-55. http://doi.org/10.1056/nejmoa1616338
  61. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, et al. Weight Loss, exercise, or both and physical function in obese older adults. New Engl J Med 2011, 364: 1218-29. http://doi.org/10.1056/nejmoa1008234
  62. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, et al. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. J Appl Physiol 2007, 102: 634-40. http://doi.org/10.1152/japplphysiol.00853.2006
  63. Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 2003, 46(8): 1071-81. http://doi.org/10.1007/s00125-003-1160-2
  64. Abushamat LA, McClatchey PM, Scalzo RL, Schauer I, Huebschmann AG, Nadeau KJ, Liu Z, Regensteiner JG, Reusch JE. Mechanistic causes of reduced cardiorespiratory fitness in type 2 diabetes. J Endocr Soc 2020, 4(7): bvaa063. http://doi.org/10.1210/jendso/bvaa063
  65. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for Americans. JAMA 2018, 320(19): 2020-28. http://doi.org/10.1001/jama.2018.14854
  66. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med Sci Sports Exerc 2011, 43(7): 1334-59. http://doi.org/10.1249/mss.0b013e318213fefb
  67. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982, 14(5): 377-81. http://doi.org/10.1249/00005768-198205000-00012
  68. da Silva Coqueiro R, de Queiroz BM, Oliveira DS, das Merces MC, Oliveira Carneiro JA, Pereira R, et al. Cross-sectional relationships between sedentary behavior and frailty in older adults. J Sports Med Phys Fitness 2017, 7(6): 825-30. http://doi.org/10.23736/s0022-4707.16.06289-7
  69. Blodgett J, Theou O, Kirkland S, Andreou P, Rockwood K. The association between sedentary behaviour, moderate-vigorous physical activity and frailty in NHANES cohorts. Maturitas 2015, 80(2): 187-91. http://doi.org/10.1016/j.maturitas.2014.11.010
  70. Kehler DS, Hay JL, Stammers AN, Hamm NC, Kimber DE, Schultz ASH, et al. A systematic review of the association between sedentary behaviors with frailty. Exp Gerontol 2018, 114: 1-12. http://doi.org/10.1016/j.exger.2018.10.010
  71. Lerma NL, Cho CC, Swartz AM, Miller NE, Keenan KG, Strath SJ. Isotemporal Substitution of Sedentary Behavior and Physical Activity on Function. Med Sci Sports Exerc 2018, 50(4): 792-800. http://doi.org/10.1249/mss.0000000000001491
  72. Nagai K, Tamaki K, Kusunoki H, Wada Y, Tsuji S, Ito M, et al. Isotemporal substitution of sedentary time with physical activity and its associations with frailty status. Clin Interv Aging 2018, 13: 1831-36. http://doi.org/10.2147/cia.s175666
  73. Bruseghini P, Tam E, Calabria E, Milanese C, Capelli C, Galvani C. High intensity interval training does not have compensatory effects on physical activity levels in older adults. Int J Environ Res Public Health 2020, 17(3): 1083. http://doi.org/10.3390/ijerph17031083
  74. Ito S. High-intensity interval training for health benefits and care of cardiac diseases - The key to an efficient exercise protocol. World J Cardiol 2019, 11(7): 171-88. http://doi.org/10.4330/wjc.v11.i7.171
  75. Boulé NG, Robert C, Bell GJ, Johnson ST, Bell RC, Lewanczuk RZ, Gabr RQ, Brocks DR. Metformin and exercise in type 2 diabetes: examining treatment modality interactions. Diabetes Care 2011, 34(7): 1469-74. http://doi.org/10.2337/dc10-2207
  76. Braun B, Eze P, Stephens BR, Hagobian TA, Sharoff CG, Chipkin SR, Goldstein B. Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab 2008, 33(1): 61-67. http://doi.org/10.1139/h07-144
  77. Linden MA, Fletcher JA, Morris EM, Meers GM, Kearney ML, Crissey JM, Laughlin MH, Booth FW, Sowers JR, Ibdah JA, Thyfault JP, Rector RS. Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats. Am J Physiol Endocrinol Metab 2014, 306(3): E300-310. http://doi.org/10.1152/ajpendo.00427.2013
  78. Malin SK, Nightingale J, Choi SE, Chipkin SR, Braun B. Metformin modifies the exercise training effects on risk factors for cardiovascular disease in impaired glucose tolerant adults. Obesity (Silver Spring) 2013, 21(1): 93-100. http://doi.org/10.1002/oby.20235
  79. Myette-Côté É, Terada T, Boulé NG. The effect of exercise with or without metformin on glucose profiles in type 2 diabetes: a pilot study. Can J Diabetes 2016, 40(2): 173-77. http://doi.org/10.1016/j.jcjd.2015.08.015
  80. Sharoff CG, Hagobian TA, Malin SK, Chipkin SR, Yu H, Hirshman MF, Goodyear LJ, Braun B. Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals. Am J Physiol Endocrinol Metab 2010, 298(4): E815-23. http://doi.org/10.1152/ajpendo.00517.2009
  81. Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD, Bush HM, Villasante Tezanos AG, McGwin G, Windham ST, Ovalle F. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double‐blind, placebo‐controlled, multicenter trial: The MASTERS trial. Aging Cell 2019, 18(6): e13039. http://doi.org/10.1111/acel.13039
  82. Konopka AR, Laurin JL, Schoenberg HM, Reid JJ, Castor WM, Wolff CA, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 2019, 18(1): e12880. http://doi.org/10.1111/acel.12880
  83. Huang T, Lu C, Schumann M, Le S, Yang Y, Zhuang H, Lu Q, Liu J, Wiklund P, Cheng S. Timing of exercise affects glycemic control in type 2 diabetes patients treated with metformin. J Diabetes Res 2018. http://doi.org/10.1155/2018/2483273
  84. Mensberg P, Nyby S, Jørgensen PG, Storgaard H, Jensen MT, Sivertsen J, Holst JJ, Kiens B, Richter EA, Knop FK, Vilsbøll T. Near‐normalization of glycaemic control with glucagon‐like peptide‐1 receptor agonist treatment combined with exercise in patients with type 2 diabetes. Diabetes, Obesity Metab 2017, 19(2): 172-80. http://doi.org/10.1111/dom.12797
  85. Newman AA, Grimm NC, Wilburn JR, Schoenberg HM, Trikha SR, Luckasen GJ, Biela LM, Melby CL, Bell C. Influence of sodium glucose cotransporter 2 inhibition on physiological adaptation to endurance exercise training. J Clin Endocrinol Metab 2019, 104(6): 1953-66. http://doi.org/10.1210/jc.2018-01741
  86. Jensen S, Janus C, Lundgren JR, Juhl CR, Blond MB, Stallknecht B, Holst JJ, Madsbad S, Torekov SS. Exercise alone and in combination with liraglutide exert clinically relevant improvements in cardiorespiratory fitness during 1-year weight loss maintenance: The S-LITE Randomized Trial. Diabetes 2020, 69 (Suppl 1): 686-P. http://doi.org/10.2337/db20-686-p
  87. Kayano H, Koba S, Hirano T, Matsui T, Fukuoka H, Tsuijita H, Tsukamoto S, Hayashi T, Toshida T, Watanabe N, Hamazaki Y. Dapagliflozin influences ventricular hemodynamics and exercise-induced pulmonary hypertension in type 2 diabetes patients―a randomized controlled trial. Circul J 2020, 84(10): 1807-17. http://doi.org/10.1253/circj.cj-20-0341
  88. Jørgensen PG, Jensen MT, Mensberg P, Storgaard H, Nyby S, Jensen JS, Knop FK, Vilsbøll T. Effect of exercise combined with glucagon‐like peptide‐1 receptor agonist treatment on cardiac function: A randomized double‐blind placebo‐controlled clinical trial. Diabetes, Obesity Metab 2017, 19(7): 1040-44. http://doi.org/10.1111/dom.12900
  89. Asmar A, Asmar M, Simonsen L, Madsbad S, Holst JJ, Hartmann B, Sorensen CM, Bülow J. Glucagon‐like peptide‐1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men. Physiol Reports 2017, 5(3): e13073. http://doi.org/10.14814/phy2.13073
  90. Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Aylor KW, Basu A, Liu Z. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin Sci 2014, 127(3): 163-70. http://doi.org/10.1042/cs20130708
  91. Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, Liu Z. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide–dependent mechanism. Diabetes 2012, 61(4): 888-96. http://doi.org/10.2337/db11-1073
  92. Chai W, Fu Z, Aylor KW, Barrett EJ, Liu Z. Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high-fat diet-fed rats. Am J Physiol Endocrinol Metab 2016, 311(3): E640-48. http://doi.org/10.1152/ajpendo.00205.2016
  93. Wang N, Tan AW, Jahn LA, Hartline L, Patrie JT, Lin S, Barrett EJ, Aylor KW, Liu Z. Vasodilatory Actions of Glucagon-Like Peptide 1 Are Preserved in Skeletal and Cardiac Muscle Microvasculature but Not in Conduit Artery in Obese Humans With Vascular Insulin Resistance. Diabetes Care 2020, 43(3): 634-42. http://doi.org/10.2337/dc19-1465
  94. Chen C, Huang Y, Zeng Y, Lu X, Dong G. Targeting the DPP-4-GLP-1 pathway improves exercise tolerance in heart failure patients: a systematic review and meta-analysis. BMC Cardiovasc Disor 2019, 19(1): 1-10. http://doi.org/10.1186/s12872-019-01275-5
  95. Gulsin GS, Swarbrick DJ, Athithan L, Brady EM, Henson J, Baldry E, Argyridou S, Jaicim NB, Squire G, Walters Y, Marsh AM. Effects of Low-Energy Diet or Exercise on Cardiovascular Function in Working-Age Adults With Type 2 Diabetes: A Prospective, Randomized, Open-Label, Blinded End Point Trial. Diabetes Care 2020, 43(6): 1300-10. http://doi.org/10.2337/dc20-0129
  96. Lavie CJ, Thomas RJ, Squires RW, Allison TG, Milani RV. Exercise training and cardiac rehabilitation in primary and secondary prevention of coronary heart disease. Mayo Clin Proc 2009, 84: 373-83. http://doi.org/10.4065/84.4.373
  97. American College of Sports Medicine, Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes III NM, Fulton JE, Gordon NF, Haskell WL, Link MS. Exercise and acute cardiovascular events: placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation 2007, 115(17): 2358-68. http://doi.org/10.1161/circulationaha.107.181485
  98. Sano M, Chen S, Imazeki H, Ochiai H, Seino Y. Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo‐controlled, double‐blind clinical trials. J Diabetes Investig 2018, 9(3): 638-41. http://doi.org/10.1111/jdi.12726
  99. Sun F, Wu S, Guo S, Yu K, Yang Z, Li L, Zhang Y, Quan X, Ji L, Zhan S. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pr 2015, 110(1): 26-37. http://doi.org/10.1016/j.diabres.2015.07.015
  100. Stepto NK, Carey AL, Staudacher HM, Cummings NK, Burke LM, Hawley JA. Effect of short-term fat adaptation on high-intensity training. Med Sci Sports Exerc 2002, 34(3): 449-55. http://doi.org/10.1097/00005768-200203000-00011
  101. Poortmans JR. Exercise and renal function. Sports Med 1984, 1(2): 125-53. http://doi.org/10.2165/00007256-198401020-00003
  102. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 2015, 38(9): 1638-42. http://doi.org/10.2337/dc15-1380
  103. Goldenberg RM, Berard LD, Cheng AY, Gilbert JD, Verma S, Woo VC, Yale JF. SGLT2 inhibitor–associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis. Clin Therapeut 2016, 38(12): 2654-64. http://doi.org/10.1016/j.clinthera.2016.11.002
  104. Henderson GC. Sexual dimorphism in the effects of exercise on metabolism of lipids to support resting metabolism. Front Endocrinol 2014, 5: 162. http://doi.org/10.3389/fendo.2014.00162
  105. Sattar N, Gill JM. Type 2 diabetes in migrant south Asians: mechanisms, mitigation, and management. Lancet Diabetes Endo 2015, 3(12): 1004-16. http://doi.org/10.1016/s2213-8587(15)00326-5
  106. Hsia Y, Dawoud D, Sutcliffe AG, Viner RM, Kinra S, Wong IC. Unlicenzed use of metformin in children and adolescents in the UK. Br J Clin Pharmacol 2012, 73(1): 135-39. http://doi.org/10.1111/j.1365-2125.2011.04063.x
  107. Wilmot EG, Davies MJ, Yates T, Benhalima K, Lawrence IG, Khunti K. Type 2 diabetes in younger adults: the emerging UK epidemic. Postgrad Med J 2010, 86(1022): 711-18. http://doi.org/10.1136/pgmj.2010.100917