- 1.
Singh, P.; Rajkhowa, S.; Sen, A.; et al. Handbook of Ionic Liquids: Fundamentals, Applications, And sustainability; John Wiley & Sons: Hoboken, NJ, USA, 2024. https://doi.org/10.1002/9783527839520.
- 2.
Kalb, R.S. Commercial applications of ionic liquids. In Toward Industrialization of Ionic Liquids; Springer: Berlin/Heidelberg, Germany, 2020.
- 3.
Gao, N.; Yang, Y.; Wang, Z.; et al. Viscosity of ionic liquids: Theories and models. Chem. Rev. 2023, 124, 27–123. https://doi.org/10.1021/acs.chemrev.3c00339.
- 4.
Jiang, S.; Hu, Y.; Wang, Y.; et al. Viscosity of typical room-temperature ionic liquids: A critical review. J. Phys. Chem. Ref. Data 2019, 48, 033101. https://doi.org/10.1063/1.5090486.
- 5.
Mota-Martinez, M.T.; Brandl, P.; Hallett, J.P.; et al. Challenges and for the utilisation of ionic liquids as solvents for CO2 capture. Mol. Syst. Des. Eng. 2018, 3, 560–571. https://doi.org/10.1039/c8me00009c.
- 6.
Hospital-Benito, D.; Lemus, J.; Moya, C.; et al. Process analysis overview of ionic liquids on CO2 chemical capture. Chem. Eng. J. 2020, 390, 124509. https://doi.org/10.1016/j.cej.2020.124509.
- 7.
Palomar, J.; Larriba, M.; Lemus, J.; et al. Demonstrating the key role of kinetics over thermodynamics in the selection of ionic liquids for CO2 physical absorption. Sep. Purif. Technol. 2019, 213, 578–586. https://doi.org/10.1016/j.seppur.2018.12.059.
- 8.
Mota-Martinez, M.T.; Hallett, J.P.; Mac Dowell, N. Solvent selection and design for CO2 capture—How we might have been missing the point. Sustain. Energy Fuels 2017, 1, 2078–2090. https://doi.org/10.1039/c7se00404d.
- 9.
Zhang, X.-M.; Huang, K.; Xia, S.; et al. Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2. Chem. Eng. J. 2015, 274, 30–38. https://doi.org/10.1016/j.cej.2015.03.052.
- 10.
Meindersma, G.W.; de Haan, A.B. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture. Sci. China-Chem. 2012, 55, 1488–1499. https://doi.org/10.1007/s11426-012-4630-x.
- 11.
Muhammad, N.; Man, Z.B.; Bustam, M.A.; et al. Synthesis and thermophysical properties of low viscosity amino acid-based ionic liquids. J. Chem. Eng. Data 2011, 56, 3157–3162. https://doi.org/10.1021/je2002368.
- 12.
Gonzalez, E.J.; Alonso, L.; Dominguez, A. Physical properties of binary mixtures of the ionic liquid 1-methyl-3-octylimidazolium chloride with methanol, ethanol, and 1-propanol at T = (298.15, 313.15, and 328.15) K and at P = 0.1 MPa. J. Chem. Eng. Data 2006, 51, 1446–1452. https://doi.org/10.1021/je060123k.
- 13.
Gomez, E.; Gonzalez, B.; Dominguez, A.; et al. Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Eng. Data 2006, 51, 696–701. https://doi.org/10.1021/je050460d.
- 14.
Seddon, K. Ionic liquids: Designer solvents for green synthesis. Chem. Eng. 2002, 33–35.
- 15.
Freemantle, M. Designer solvents—Ionic liquids may boost clean technology development. Chem. Eng. News 1998, 76, 32–37. https://doi.org/10.1021/cen-v076n013.p032.
- 16.
Palomar, J.; Lemus, J.; Navarro, P.; et al. Process simulation and optimization on ionic liquids. Chem. Rev. 2024, 124, 1649–1737. https://doi.org/10.1021/acs.chemrev.3c00512.
- 17.
de Riva, J.; Ferro, V.R.; del Olmo, L.; et al. Statistical refinement and fitting of experimental viscosity-to-temperature data in ionic liquids. Ind. Eng. Chem. Res. 2014, 53, 10475–10484. https://doi.org/10.1021/ie5014426.
- 18.
Ferro, V.R.; Moya, C.; Moreno, D.; et al. Enterprise ionic liquids database (ILUAM) for use in Aspen ONE programs suite with COSMO-based property methods. Ind. Eng. Chem. Res. 2018, 57, 980–989. https://doi.org/10.1021/acs.iecr.7b04031.
- 19.
Andrade, E.N.C. The viscosity of liquids. Nature 1930, 125, 309–310.
- 20.
Aspen Technology. Aspen Plus (v 15.0) Help; Aspen Technology Inc: Bedfordm, MA, USA, 2025.
- 21.
Lin, S.T.; Sandler, S.I. A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 2002, 41, 899–913. https://doi.org/10.1021/ie001047w.
- 22.
Payne, G.A.; Palmer, C.M.; Brill, J.P.; et al. Evaluation of inclined pipe, 2-phase liquid holdup and pressure loss correlations using experimental data. J. Pet. Technol. 1979, 31, 1198–1208.
- 23.
Beggs, H.D.; Brill, J.P. Study of 2-phase flow in inclined pipes. J. Pet. Technol. 1973, 25, 607–617.
- 24.
Ulrich, G.D.; Vasudevan, P.T. Chemical Engineering Process Design and Economics: A Practical Guide, 2nd, ed.; Process Publishing: Port Townsend, WA, USA, 2004.
- 25.
Towler, G.; Sinnot, R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design; Elsevier: Boston, MA, USA, 2008.
- 26.
Woods, D.R. Rules of Thumb in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 2008.
- 27.
Turton, R.; Bailie, R.C.; Whiting, W.B.; et al. Analysis, Synthesis and Design of Chemical Processes; Prentice Hall: Upper Saddle River, NJ, USA, 2012.
- 28.
Branan, C. Rules of Thumb for Chemical Engineers; Elsevier: Burlington, MA, USA, 2005.
- 29.
Gouveia, A.S.L.; Tome, L.C.; Marrucho, I.M. Density, viscosity, and refractive index of ionic liquid mixtures containing cyano and amino acid-based anions. J. Chem. Eng. Data 2016, 61, 83–93. https://doi.org/10.1021/acs.jced.5b00242.
- 30.
Lundstedt, T.; Seifert, E.; Abramo, L.; et al. Experimental design and optimization. Chemom. Intell. Lab. Syst. 1998, 42, 3–40. https://doi.org/10.1016/s0169-7439(98)00065-3.
- 31.
Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019.
- 32.
Doehlert, D.H. Uniform shell designs. J. R. Stat. Society. Ser. C 1970, 19, 231–239.
- 33.
Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. https://doi.org/10.1137/0111030.
- 34.
de Oña, J.; Garrido, C. Extracting the contribution of independent variables in neural network models: A new approach to handle instability. Neural Comput. Appl. 2014, 25, 859–869. https://doi.org/10.1007/s00521-014-1573-5.
- 35.
Eiden, P.; Bulut, S.; Koechner, T.; et al. In silico predictions of the temperature-dependent viscosities and electrical conductivities of functionalized and nonfunctionalized ionic liquids. J. Phys. Chem. B 2011, 115, 300–309. https://doi.org/10.1021/jp108059x.
- 36.
COSMOThermX, version 20.0.0, Revision 5273M; Dassault Systems: Waltham, MA, USA, 2019.
- 37.
Omar Valderrama, J.; Makarena Munoz, J.; Erasmo Rojas, R. Viscosity of ionic liquids using the concept of mass connectivity and artificial neural networks. Korean J. Chem. Eng. 2011, 28, 1451–1457. https://doi.org/10.1007/s11814-010-0512-0.
- 38.
Luyben, W.L. Principles and Case Studies of Simultaneous Design; John Wiley & Sons: Hoboken, NJ, USA, 2010.
- 39.
Seider, W.D.; Seader, J.D.; Lewin, D.R. Process Design & Principles: Synthesis, Analysis and Evaluation, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999.