- 1.
Cheng, H.; Li, J.; Wu, Y.; et al. Challenges and Prospects of AC/DC Transmission Network Planning Considering High Penetration of Renewable Energy. Autom. Electr. Power Syst. 2017, 41, 19–27.
- 2.
Wang, M.; Sun, H. Online Localization Analysis Technology for Forced Power Oscillation Sources. Proc. CSEE 2014, 34, 6209–6215.
- 3.
Banna, H.U.; Solanki, S.K.; Solanki, J. Data-driven Disturbance Source Identification for Power System Oscillations Using Credibility Search Ensemble Learning. IET Smart Grid 2019, 2, 293–300.
- 4.
Gu, J.; Xie, D.; Gu, C.; et al. Location of Low-Frequency Oscillation Sources Using Improved D-S Evidence Theory. Int. J. Electr. Power Energy Syst. 2021, 125, 106444.
- 5.
Doran, D.; Schulz, S.; Besold, T.R. What Does Explainable AI Really Mean? A New Conceptualization of Perspectives. arXiv 2017, arXiv:1710.00794.
- 6.
Samek, W.; Wiegand, T.; Müller, K.R. Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. arXiv 2017, arXiv:1708.08296.
- 7.
Zhang, Q.-S.; Zhu, S.-C. Visual Interpretability for Deep Learning: A Survey. Front. Inf. Technol. Electron. Eng. 2018, 19, 27–39.
- 8.
Han, T.; Chen, J.; Li, Y.; et al. Research on Interpretable Proxy Models for Power System Stability Assessment Using Machine Learning. Proc. CSEE 2020, 40, 4122–4131.
- 9.
Ji, S.; Li, J.; Du, T.; et al. A Review of Interpretability Methods, Applications, and Security Research for Machine Learning Models. J. Comput. Res. Dev. 2019, 56, 2071–2096.
- 10.
Saltelli, A.; Tarantola, S.; Campolongo, F.; et al. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. J. R. Stat. Soc. Ser. A 2004, 168, 464.
- 11.
Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.
- 12.
Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30.
- 13.
Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2018, arXiv:1802.03888.
- 14.
Robnik-Šikonja, M.; Kononenko, I. Explaining Classifications for Individual Instances. IEEE Trans. Knowl. Data Eng. 2008, 20, 589–600.
- 15.
Fong, R.; Vedaldi, A. Interpretable Explanations of Black Boxes by Meaningful Perturbation. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
- 16.
Li, J.; Monroe, W.; Jurafsky, D. Understanding Neural Networks through Representation Erasure. arXiv 2016, arXiv:1612.08220.
- 17.
Chen, W. Pre-Loan Overdue Identification and Model Expression for Internet Finance Based on XGBoost. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019.
- 18.
Yu, J. Research on Prediction Model for Gestational Diabetes Based on Ensemble Learning Algorithms. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019.
- 19.
Feng, S.; Cui, H.; Chen, J.; et al. Wide-Frequency Oscillation Disturbance Source Localization Method Based on Autoencoder Signal Compression and LSTM. Autom. Electr. Power Syst. 2022, 1–12.