- 1.
Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938.
- 2.
Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2017, 143, 710–718. https://doi.org/10.1016/j.jclepro.2016.12.055.
- 3.
Zhao, H.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. https://doi.org/10.1016/j.rser.2012.02.049.
- 4.
Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
- 5.
Kong, W.; Dong, Z.Y.; Jia, Y.; et al. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2019, 10, 841–851.
- 6.
Cho, K.; van Merriënboer, B.; Bahdanau, D.; et al. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259.
- 7.
Zheng, Z.; Zhu, J.; Lu, Y. Load forecasting using a GRU-based RNN model. In Proceedings of the International Conference on Energy, Electrical and Power Engineering, Munich, Germany, 17–18 July 2017.
- 8.
Li, S.; Jin, X.; Xuan, Y.; et al. Enhancing Transformer Efficiency with Channel-wise Tokenization for Time Series Forecasting. In Advances in Neural Information Processing Systems; NeurIPS: La Jolla, CA, USA, 2023; Volume 36.
- 9.
Dao, T.; Fu, D.; Ermon, S.; et al. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. In Advances in Neural Information Processing Systems NeurIPS: La Jolla, CA, USA, 2022; Volume 35.
- 10.
Liu, Y.; Gu, J.; Zeng, X.; et al. Flowformer: A Continuous-Time Transformer for Time Series Forecasting. In Proceedings of the 39th International Conference on Machine Learning, PMLR, Baltimore, Maryland, USA, 17–23 July 2022; Volume 162, pp. 14329–14343.
- 11.
Zhou, H.; Zhang, S.; Peng, J.; et al. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 11106–11115.
- 12.
Kitaev, N.; Kaiser, Ł.; Levskaya, A. Reformer: The Efficient Transformer. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
- 13.
Chen, Y.; Zhang, D. Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory, Adv. Appl. Energy 2021, 1, 100004. https://doi.org/10.1016/j.adapen.2020.100004.
- 14.
Staffell, I.; Pfenninger, S.; Johnson, N. A global model of hourly space heating and cooling demand at multiple spatial scales. Nat. Energy 2023, 8, 1328–1344. https://doi.org/10.1038/s41560-023-01341-5.
- 15.
Yang, W.; Sparrow, S.N.; Wallom, D.C. A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods. Appl. Energy 2024, 368, 123365. https://doi.org/10.1016/j.apenergy.2024.123365.
- 16.
Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681.