- 1.
The Central People’s Government of the People’s Republic of China. Xi Jinping Presided over the 9th Meeting of the Central Financial and Economic Affairs Commission. 2024. Available online: http://www.gov.cn/xinwen/2021-03/15/content_5593154.htm (accessed on 15 May 2025).
- 2.
Yang, Y.; Sun, Y.-Y.; Mao, Z.-H.; et al. Generation Method for Extreme Wind Power Scenarios Induced by Mid-term Weather Processes. Proc. CSEE 2024, 1, 1–11.
- 3.
World Meteorological Organization. State of the Global Climate 2023. WMO, 2024. Available online: https://wmo.int/publication-series/state-of-global-climate-2023 (accessed on 19 May 2025).
- 4.
Gao, Z.-T.; Zhang, J.; Li, Y.; et al. Impact of Extreme Weather on Local Wind Conditions in Wind Farms. J. Huazhong Univ. Sci. Technol. 2024, 52, 106–112.
- 5.
Yang, N.; Xu, G.; Fei, Z.; et al. Two-Stage Coordinated Robust Planning of Multi-Energy Ship Microgrids Considering Thermal Inertia and Ship Navigation. IEEE Trans. Smart Grid 2025, 16, 1100–1111. https://doi.org/10.1109/TSG.2024.3524550.
- 6.
Dong, X.-C.; Zhang, S.; Li, Y.; et al. Review of Sequential Scenario Generation and Reduction Methods in Power Systems. Power Syst. Technol. 2023, 47, 709–721.
- 7.
Wang, X.-Y.; Li, Y.; Dong, X.-C.; et al. Multi-source and Load Scenario Generation Method for Active Distribution Networks Based on Variational Autoencoder. Power Syst. Technol. 2021, 45, 2962–2969.
- 8.
Kang, M.Y.; Zhu, R.; Chen, D.X.; et al. A Cross-modal Generative Adversarial Network for Scenarios Generation of Renewable Energy. IEEE Trans. Power Syst. 2024, 39, 2630–2640.
- 9.
Dong, X.-C.; Mao, Z.-H.; Sun, Y.-Y.; et al. Short-term Wind Power Scenario Generation Based on Conditional Latent Diffusion Models. IEEE Trans. Sustain. Energy 2024, 15, 1074–1085.
- 10.
Wang, J.; Yu, J.; Kong, X. Mid- to Long-term Load Forecasting Model Based on Dual Decomposition and Bidirectional Long Short-term Memory Network. Power Syst. Technol. 2024, 48, 3418–3426.
- 11.
Munkhammar, J.; van der Meer, D.; Widén, J. Very Short Term Load Forecasting of Residential Electricity Consumption Using the Markov-chain Mixture Distribution (MCM) Model. Appl. Energy 2021, 282, 116180.
- 12.
Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning Methods for Integrated Renewable Power Generation: A Comparative Study of Artificial Neural Networks, Support Vector Regression, and Gaussian Process Regression. Renew. Sustain. Energy Rev. 2019, 108, 513–538.
- 13.
Lucheroni, C.; Boland, J.; Ragno, C. Scenario Generation and Probabilistic Forecasting Analysis of Spatio-temporal Wind Speed Series with Multivariate Autoregressive Volatility Models. Appl. Energy 2019, 239, 1226–1241.
- 14.
Zhou, N.; Xu, X.; Yan, Z.; et al. Spatio-temporal Probabilistic Forecasting of Photovoltaic Power Based on Monotone Broad Learning System and Copula Theory. IEEE Trans. Sustain. Energy 2022, 13, 1874–1885.
- 15.
Yang, N.; Xiong, Z.; Ding, L.; et al. A Game-based Power System Planning Approach Considering Real Options and Coordination of All Types of Participants. Energy 2024, 312, 133400. https://doi.org/10.1016/j.energy.2024.133400.
- 16.
Ye, L.; Pei, M.; Yang, J.-B.; et al. Power Balance Mechanism in New Energy Power Systems Under Extreme Weather Conditions. Autom. Electr. Power Syst. 2025, 49, 2–18.