- 1.
- 2.
National Institute of Mental Health. Autism Spectrum Disorder—National Institute of Mental Health (NIMH). Available online:
https://www.nih.gov/ (accessed on 12 February 2024).
- 3.
Mayo Clinic. Autism Spectrum Disorder—Symptoms and Causes—Mayo Clinic. Available online:
https://www.mayoclinic.org/ (accessed on 6 January 2018).
- 4.
Wood, J.J.; Kendall, P.C.; Wood, K.S.; et al. Cognitive Behavioral Treatments for Anxiety in Children with Autism Spectrum Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2019, 77, 474–483.
https://doi.org/10.1001/jamapsychiatry.
- 5.
- 6.
Porter, S.; Ten Brinke, L. Reading between the lies: Identifying concealed and falsified emotions in universal facial expressions. Psychol. Sci. 2008, 19, 508–514.
- 7.
Ekman, P.; Martin, C.W. Lie catching and microexpressions. In The Philosophy of Deception; Oxford University Press: Oxford, UK, 2009; pp. 118–121.
- 8.
Wang, C.; Peng, M.; Bi, T.; et al. Micro-attention for micro-expression recognition. Neurocomputing 2020, 410, 354–362.
- 9.
Li, J.; Yap, M.H.; Cheng, W.H.; et al. FME’22: 2nd Workshop on Facial Micro-Expression: Advanced Techniques for Multi-Modal Facial Expression Analysis. In Proceedings of the 30th ACM International Conference on Multimedia, New York, NY, USA, 10–14 October 2022; pp. 7397–7399.
- 10.
Guerdelli, H.; Ferrari, C.; Barhoumi, W.; et al. Macro-and micro-expressions facial datasets: A survey. Sensors 2022, 22, 1524.
- 11.
Li, Y.; Wei, J.; Liu, Y.; et al. Deep learning for micro-expression recognition: A survey. IEEE Trans. Affect. Comput. 2022, 13, 2028–2046.
- 12.
Sayette, M.A.; Cohn, J.F.; Wertz, J.M.; et al. A psychometric evaluation of the facial action coding system for assessing spontaneous expression. J. Nonverbal Behav. 2001, 25, 167–185.
- 13.
- 14.
Zarins Uldis. Anatomy of Facial Expression. Anatomy Next, Inc.: Beacon, NY 12508, USA, 2019.
- 15.
Fan, B.; Guo, L. Stylistic Transfer between Intergenerational Directors: a Metrological Study of the Fifth and Sixth-Generation Chinese Directors. J. Guizhou Univ. Art Ed. 2021, 2021(3), 72–85. (In Chinese).
- 16.
Li, W.; Wang, Z. Visualization Analysis on Intellectual Structures and Research Fronts of “Cinemetrics”: Quantitative Film Studies. In Proceedings of the 2023 8th International Conference on Information and Education Innovations, Manchester, UK, 13–15 April 2023; pp.206–210.
- 17.
Qiao, J.Q., A glimpse into the style of early Chinese cinema (1922–1937): A quantitative film studies perspective. Movie Review 2022, 2022(22). Doi: 10.16583/j.cnki.52-1014/j.2021.22.025. (In Chinese).
- 18.
Tolba, A.S.; El-Baz, A.H.; El-Harby, A.A. Face recognition: A literature review. Int. J. Signal Process 2006, 2, 88–103.
- 19.
Hassaballah, M.; Aly, S. Face recognition: Challenges, achievements and future directions. IET Comput. Vis. 2015, 9, 614–626.
- 20.
Zhu, Z.; Liu, L.; Free, R.C.; et al. OPT-CO: Optimizing pre-trained transformer models for efficient COVID-19 classification with stochastic configuration networks. Inf. Sci. 2024, 680, 121141.
https://doi.org/10.1016/j.ins.2024.121141.
- 21.
Ren, S.; He, K.; Girshick, R.; et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149.
- 22.
- 23.
Shuai, Q.; Wu, X. Object detection system based on SSD algorithm. In Proceedings of the 2020 International Conference on Culture-oriented Science & Technology (ICCST), Beijing, China, 28–31 October 2020; pp. 141–144.
https://doi.org/10.1109/ICCST50977.2020.00033.
- 24.
Jeong, J.; Park, H.; Kwak, N. Enhancement of SSD by concatenating feature maps for object detection. arXiv 2017, arXiv:1705.09587.
- 25.
- 26.
- 27.
Zhang, C.; Xu, X.; Tu, D. Face detection using improved faster rcnn. arXiv 2018, arXiv:1802.02142.
- 28.
Cheng, B.; Wei, Y.; Shi, H.; et al. Revisiting rcnn: On awakening the classification power of faster rcnn. In Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 453–468.
- 29.
- 30.
Qian, S.; Ning, C.; Hu, Y. MobileNetV3 for Image Classification. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 490–497.
https://doi.org/10.1109/ICBAIE52039.2021.9389905.
- 31.
Koonce, B.; Koonce, B. MobileNetV3. In Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization; Apress: Berkeley, CA, USA, 2021; pp.125–144.
- 32.
Zhao, L.; Wang, L. A new lightweight network based on MobileNetV3. KSII Trans. Internet Inf. Syst. Korean Soc. Internet Inf. (KSII) 2022, 16, 1–15.
- 33.
Ren; Yun; Zhu, C.; Xiao, S. Object detection based on fast/faster RCNN employing fully convolutional architectures. Math. Probl. Eng. 2018, 2018, 3598316.
https://doi.org/10.1155/2018/3598316.
- 34.
Liu; Bin; Zhao, W.; Sun, Q. Study of object detection based on Faster R-CNN. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 6233–6236.
- 35.
Jiang, H.; Learned-Miller, E. Face Detection with the Faster R-CNN. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 650–657.
https://doi.org/10.1109/FG.2017.82.
- 36.
Kong; Xiaohong; Li, X.; Zhu, X.; et al. Detection model based on improved faster-RCNN in apple orchard environment. Intell. Syst. Appl. 2024, 21, 200325.
- 37.
- 38.
Rehman, M.U.; Shafique, A.; Ghadi, Y.Y.; et al. A Novel Chaos-Based Privacy-Preserving Deep Learning Model for Cancer Diagnosis. IEEE Trans. Netw. Sci. Eng. 2022, 9, 4322–4337.
- 39.
Rehman, M.U.; Shafique, A.; Khan, I.U.; et al. An efficient deep learning model for brain tumour detection with privacy preservation. CAAI Trans. Intell. Technol. 2023, 1–16.
https://doi.org/10.1049/cit2.12254.
- 40.
Rehman, M.U.; Shafique, A.; Khan, M.S.; et al. A novel medical image data protection scheme for smart healthcare system. CAAI Trans. Intell. Technol. 2023, 9, 821–836.