- 1.
Sta˚hl, P.L.; Salme´n, F.; Vickovic, S.; et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016, 353, 78–82.
- 2.
Asp, M.; Bergenstra˚hle, J.; Lundeberg, J. Spatially resolved transcriptomes—next generation tools for tissue exploration. Bioessays 2020, 42, 1900221.
- 3.
Soldatov, R.; Kaucka, M.; Kastriti, M.E.; et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 2019, 364, eaas9536.
- 4.
Maynard, K.R.; Collado-Torres, L.; Weber, L.M.; et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 2021, 24, 425–436.
- 5.
Akeret, K.; Hugelshofer, M.; Schaer, D.J.; et al. Spatial transcriptome data from coronal mouse brain sections after striatal injection of heme and heme-hemopexin. Data Brief 2022, 41, 107866.
- 6.
Moncada, R.; Barkley, D.; Wagner, F.; et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 2020, 38, 333–342.
- 7.
Chen, W.T.; Lu, A.; Craessaerts, K.; et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 2020, 182, 976–991.
- 8.
Hao, Y.; Stuart, T.; Kowalski, M.H.; et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2024, 42, 293–304.
- 9.
Lin, X.; Liu, H.; Wei, Z.; et al. An active learning approach for clustering single-cell RNA-seq data. Lab. Investig. 2022, 102, 227–235.
- 10.
Tian, T.; Zhang, J.; Lin, X.; et al. Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data. Nat. Commun. 2021, 12, 1873.
- 11.
Long, Y.; Ang, K.S.; Li, M.; et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 2023, 14, 1155.
- 12.
Shang, L.; Zhou, X. Spatially aware dimension reduction for spatial transcriptomics. Nat. Commun. 2022, 13, 7203.
- 13.
Hu, J.; Li, X.; Coleman, K.; et al. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 2021, 18, 1342–1351.
- 14.
Zhao, E.; Stone, M.R.; Ren, X.; et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 2021, 39, 1375–1384.
- 15.
Pham, D.; Tan, X.; Xu, J.; et al. stLearn: integrating spatial location, tissue morphology and gene expression to ffnd cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020,
https://doi.org/10.1101/2020.05.31.125658.
- 16.
Lin, X.; Gao, L.; Whitener, N.; et al. A model-based constrained deep learning clustering approach for spatially resolved single-cell data. Genome Res. 2022, 32, 1906–1917.
- 17.
Tian, T.; Zhang, J.; Lin, X.; et al. Dependency-aware deep generative models for multitasking analysis of spatial omics data. Nat. Methods 2024, 21, 1–13.
- 18.
Chen, T.; Kornblith, S.; Norouzi, M.; et al. A simple framework for contrastive learning of visual representations. Int. Conf. Mach. Learn. 2020, 119, 1597–1607.
- 19.
Ren, H.; Walker, B.L.; Cang, Z.; et al. Identifying multicellular spatiotemporal organization of cells with SpaceFlow. Nat. Commun. 2022, 13, 4076.
- 20.
- 21.
Zhang, A.W.; O’Flanagan, C.; Chavez, E.A.; et al. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment proffling. Nat. Methods 2019, 16, 1007–1015.
- 22.
Zhong, C.; Tian, T.; Wei, Z. Hidden Markov random ffeld models for cell-type assignment of spatially resolved transcriptomics. Bioinformatics 2023, 39, btad641.
- 23.
Pardo, B.; Spangler, A.; Weber, L.M.; et al. spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data. BMC Genom. 2022, 23, 434.
- 24.
Buzzi, R.M.; Akeret, K.; Schwendinger, N.; et al. Spatial transcriptome analysis deffnes heme as a hemopexin-targetable inffammatoxin in the brain. Free. Radic. Biol. Med. 2022, 179, 277–287.
- 25.
Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019, 20, 296.
- 26.
Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018, 19, 1–5.
- 27.
Kipf, T.; Welling, M. Semi-Supervised Classiffcation with Graph Convolutional Networks. Proceedings of the International Conference on Learning Representations (ICLR) 2017.
- 28.
Scrucca, L.; Fraley, C.; Murphy, T.B.; et al. Model-Based Clustering, Classiffcation, and Density Estimation Using Mclust in R; Chapman and Hall/CRC: London, UK, 2023.