- 1.
Tian, D.; Chen, W.; Xu, D.; et al. A review of traditional Chinese medicine diagnosis using machine learning: Inspection, auscultation-olfaction, inquiry, and palpation. Comput. Biol. Med. 2024, 170, 108074.
- 2.
Balasubramaniyan, S.; Jeyakumar, V.; Nachimuthu, D.S. Panoramic tongue imaging and deep convolutional machine learning model for diabetes diagnosis in humans. Sci. Rep. 2022, 12, 186.
- 3.
Dong SU, I.; Zhang, L.; Fei, Y. Data-driven based four examinations in TCM: A survey. Digit. Chin. Med. 2022, 5, 377–385.
- 4.
Wu, K.; Zhang, D. Robust tongue segmentation by fusing region-based and edge-based approaches. Expert Syst. Appl. 2015, 42, 8027–8038.
- 5.
Cao, H.; Wang, Y.; Chen, J.; et al. Swin-unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; pp. 205–218.
- 6.
Zhu, Z.; Liu, L.; Free, R.C.; et al. OPT-CO: Optimizing pre-trained transformer models for efficient COVID-19 classification with stochastic configuration networks. Inf. Sci. 2024, 680, 121141.
- 7.
Lu, S.Y.; Zhu, Z.; Tang, Y.; et al. CTBViT: A novel ViT for tuberculosis classification with efficient block and randomized classifier. Biomed. Signal Process. Control 2025, 100, 106981.
- 8.
Lu, S.Y.; Zhang, Y.D.; Yao, Y.D. A regularized transformer with adaptive token fusion for Alzheimer’s disease diagnosis in brain magnetic resonance images. Eng. Appl. Artif. Intell. 2025, 155, 111058.
- 9.
Zhu, Z.; Ren, Z.; Lu, S.; et al. DLBCNet: A deep learning network for classifying blood cells. Big Data Cogn. Comput. 2023, 7, 75.
- 10.
Huang, X.; Zhang, H.; Zhuo, L.; et al. TISNet-Enhanced fully convolutional network with encoder-decoder structure for tongue image segmentation in Traditional Chinese Medicine. Comput. Math. Methods Med. 2020, 2020, 6029258.
- 11.
Yao, L.; Xu, Y.; Zhang, S.; et al. HPA-UNet: A Hybrid Post-Processing Attention U-Net for Tongue Segmentation. IEEE J. Biomed. Health Inform. 2024. https://doi.org/10.1109/JBHI.2024.3446623
- 12.
Jia, G.; Cui, Z.; Fei, Q. QA-TSN: QuickAccurate Tongue Segmentation Net. Knowl. -Based Syst. 2025, 307, 112648.
- 13.
Huang, Z.; Huang, R.; Zhang, J.; et al. Attention guided tongue segmentation with geometric knowledge in complex environments. Biomed. Signal Process. Control 2025, 104, 107426.
- 14.
Chen, L.C.; Papandreou, G.; Kokkinos, I.; et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848.
- 15.
Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495.
- 16.
BioHit. Tongueimagedataset. 2014. Available online: https://github.com/BioHit/TongeImageDataset (accessed on 1 August 2024).
- 17.
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
- 18.
Peng, C.; Zhang, X.; Yu, G.; et al. Large kernel matters—Improve semantic segmentation by global convolutional network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4353–4361.
- 19.
Quan, T.M.; Hildebrand, D.G.C.; Jeong, W.K. Fusionnet: A deep fully residual convolutional neural network for image segmentation in connectomics. Front. Comput. Sci. 2021, 3, 613981.
- 20.
Chen, L.C.; Zhu, Y.; Papandreou, G.; et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818.
- 21.
Yu, C.; Wang, J.; Peng, C.; et al. Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.