- 1.
Busching, P.; Karhade, A.V. Fracture incidence and risk factors: A global review. ¨ J. Trauma Acute Care Surg. 2021, 70, 512–520.
- 2.
Smith, W.E.; Brown, G.W. Imaging modalities in fracture diagnosis: A review of X-ray, CT, and MRI. Eur. Radiol. 2019, 29, 4732–4745.
- 3.
Liu, H.; Zhang, X. Advantages and challenges of X-ray imaging in bone fracture diagnosis. Med. Imaging J. 2018, 45, 80–85.
- 4.
Li, J.; Wang, Z. Diagnostic errors in emergency medicine: The impact of imaging modalities in fracture diagnosis. J. Emerg. Med. 2020, 58, 584–591.
- 5.
Erhan, E.; Kara, P.; Oyar, O.; et al. Overlooked extremity fractures in the emergency department. Turk. J. Trauma Emerg. Surg. 2013, 19, 25–28.
- 6.
Mounts, J.; Clingenpeel, J.; McGuire, E.; et al. Most frequently missed fractures in the emergency department. Clin. Pediatr. 2011, 50, 183–186.
- 7.
Adams, S.; Henderson, R.; Yi, X.; et al. Artificial intelligence solutions for analysis of X-ray images. Can. Assoc. Radiol. J. 2021, 72, 60–72.
- 8.
Choi, J.; Cho, Y.; Lee, S.; et al. Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Investig. Radiol. 2020, 55, 101–110.
- 9.
Chung, S.; Han, S.; Lee, J.; et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018, 89, 468–473.
- 10.
Tanzi, L.; Vezzetti, E.; Moreno, R.; et al. Hierarchical fracture classification of proximal femur X-ray images using a multistage deep learning approach. Eur. J. Radiol. 2020, 133, 109373.
- 11.
Jones, D.; Smith, R.; Brown, C. Automated detection of fractures in radiographs using edge detection and machine learning. J. Med. Imaging 2005, 14, 101–110.
- 12.
Zhang, L.; Wang, F.; Li, Y. Fracture detection based on texture features in medical images. IEEE Trans. Med. Imaging 2008, 27, 163–170.
- 13.
Wang, X.; Zhang, Y.; Lee, J. Feature fusion for automated detection of hip fractures from radiographs. Comput. Med. Imaging Graph. 2012, 36, 253–260.
- 14.
Kim, Y.; Lee, C.; Park, J. Deep learning for detecting bone fractures in X-ray images using ResNet-50. J. Med. Imaging 2017, 44, 33–39.
- 15.
Wang, L.; Zhang, H.; Li, X. Deep learning-based two-stage detector for fracture detection using Faster R-CNN. IEEE Trans. Med. Imaging 2017, 36, 853–860.
- 16.
Liu, M.; Zhang, T.; Li, X. FracFormer: A Transformer-based model for complex pelvic fracture detection with multimodal data fusion. IEEE Trans. Med. Imaging 2022, 41, 4381–4390.
- 17.
Chen, S.; Wang, J.; Liu, J. EdgeFracNet: A lightweight deep learning model for fracture detection with neural architecture search. J. Med. Imaging 2023, 56, 11–18.
- 18.
Ju, R.Y.; Li, X.; Wang, Y. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8. Sci. Rep. 2023, 13, 20077.
- 19.
Chen, P.; Liu, S.; Lu, W.; et al. WCAY object detection of fractures for X-ray images of multiple sites. Sci. Rep. 2024, 14, 26702.
- 20.
Tahir, A.; Saadia, A.; Khan, K.; et al Enhancing diagnosis: ensemble deep-learning model for fracture detection using X-ray images. Clin. Radiol. 2024, 79, e1394–e1402.
- 21.
Lin, T.Y.; Dollar, P.; Girshick, R.B.; et al. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2980–2988.
- 22.
Chen, Q.; Wang, Y.; Yang, T.; et al. You only look one-level feature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13039–13048.
- 23.
Ge, C.; Zhang, S.; Li, Q.; et al. YOLOX: Exceeding YOLO series in 2021. arXiv 2021, arXiv:2107.08430.
- 24.
Wang, A.; Chen, H.; Chen, K.; et al. YOLOv10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458.
- 25.
Dai, J.; Xie, Y.; Wang, X.; et al. CO-DETR: Contrastive learning for object detection in transformers. arXiv 2021, arXiv:2106.04751.
- 26.
Zhu, X.; Liang, Z.; Liu, Y.; et al. Sparse R-CNN: End-to-end object detection with sparse features. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3355–3365.
- 27.
Ren, S.; He, K.; Girshick, R.; et al. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99.
- 28.
Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into high quality object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1244–1256.
- 29.
Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3958–3968.
- 30.
He, K.; Zhang, X.; Ren, S.; et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
- 31.
Huang, Z.; Wang, X.; Li, W. CSPNet: A new backbone that can enhance learning capability of CNN. arXiv 2020, arXiv:2004.08955.
- 32.
Liu, Z.; Lin, Y.; Cao, Y.; et al. Swin Transformer: Hierarchical vision transformer using shifted windows. arXiv 2021, arXiv:2103.14030.
- 33.
Redmon, J.; Divvala, S.; Girshick, R.; et al. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.