2512002435
  • Open Access
  • Article

Large Language Models in Medicine: Application Status and Challenges

  • Ziqi Chen 1,   
  • Yiwei Lu 1,   
  • Yan Zeng 1,   
  • Dingcheng Tian 2,   
  • Yun Li 1,   
  • Fei Li 1,*

Received: 03 Sep 2025 | Revised: 01 Dec 2025 | Accepted: 02 Dec 2025 | Published: 09 Dec 2025

Abstract

In recent years, the rapid evolution of large language models (LLMs) has driven revolutionary changes in multiple medical application scenarios, showcasing vast potential. With continuous technological developments, LLMs have made substantial advancements in clinical diagnosis and support, medical education and training, clinical documentation processing, patient interaction and public education, and medical research assistance. This paper first explores the practical applications of LLMs in these medical scenarios, analyzing how LLMs contribute to improving clinical decisionmaking efficiency, optimizing medical education, improving patient interaction, and advancing medical research. The paper then discusses the key technical elements of LLMs in the medical field, including data and knowledge construction, model training methods, and multi-modal data fusion. We also focus on the challenges faced by LLMs in medical applications, including data limitations, model hallucinations, and insufficient standardization of evaluation. Finally, the paper looks ahead to future research directions, highlighting the improvement of evaluation frameworks, the enhancement of personalized medical capabilities, the development of multi-modal medical LLMs, and the strengthening of ethical and regulatory compliance. Through these analyses, this paper aims to advance the ongoing development and practical application of medical LLMs.

References 

  • 1.

    Chang, Y.; Wang, X.; Wang, J.; et al. A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol.
    2024, 15, 1–45.

  • 2.

    Huang, J.; Xu, Y.; Wang, Q.; et al. Foundation models and intelligent decision-making: Progress, challenges, and
    perspectives. Innovation 2025, 6, 6100948.

  • 3.

    Asif, S.; Wenhui, Y.; ur Rehman, S.; et al. Advancements and prospects of machine learning in medical diagnostics:
    Unveiling the future of diagnostic precision. Arch. Comput. Methods Eng. 2025, 32, 853–883.

  • 4.

    Wang, D.; Zhang, S. Large language models in medical and healthcare fields: Applications, advances, and challenges.
    Artif. Intell. Rev. 2024, 57, 299.

  • 5.

    Li, X.; Zhao, L.; Zhang, L.; et al. Artificial general intelligence for medical imaging analysis. IEEE Rev. Biomed. Eng.
    2024, 18, 113–129.

  • 6.

    Guo, D.; Yang, D.; Zhang, H.; et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
    arXiv 2025, arXiv:2501.12948.

  • 7.

    Gibney, E. China’s cheap, open AI model DeepSeek thrills scientists. Nature 2025, 638, 13–14.

  • 8.

    Shen, T.; Li, Y.; Cao, Y.; et al. Rapid deployment of large language model DeepSeek in Chinese hospitals demands a
    regulatory response. Nat. Med. 2025, 31, 3233–3238.

  • 9.

    Liu, M.; Okuhara, T.; Chang, X.; et al. Performance of ChatGPT across different versions in medical licensing examinations
    worldwide: systematic review and meta-analysis. J. Med. Internet Res. 2024, 26, e60807.

  • 10.

    Katz, U.; Cohen, E.; Shachar, E.; et al. GPT versus resident physicians—A benchmark based on official board scores. Nejm
    Ai 2024, 1, AIdbp2300192.

  • 11.

    Kanjee, Z.; Crowe, B.; Rodman, A. Accuracy of a generative artificial intelligence model in a complex diagnostic challenge.
    Jama 2023, 330, 78–80.

  • 12.

    Achiam, J.; Adler, S.; Agarwal, S.; et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774.

  • 13.

    Guo, D.; Yang, D.; Zhang, H.; et al. Deepseek-r1 incentivizes reasoning in llms through reinforcement learning. Nature
    2025, 645, 633–638.

  • 14.

    Touvron,H.; Lavril, T.; Izacard,G.; et al. Llama: Open and efficient foundation languagemodels. arXiv 2023, arXiv:2302.13971.

  • 15.

    Bai, Y.; Kadavath, S.; Kundu, S.; et al. Constitutional ai: Harmlessness from ai feedback. arXiv 2022, arXiv:2212.08073.

  • 16.

    Liu, A.; Feng, B.; Xue, B.; et al. Deepseek-v3 technical report. arXiv 2024, arXiv:2412.19437.

  • 17.

    Sandmann, S.; Riepenhausen, S.; Plagwitz, L.; et al. Systematic analysis of ChatGPT, Google search and Llama 2 for
    clinical decision support tasks. Nat. Commun. 2024, 15, 2050.

  • 18.

    Singhal, K.; Tu, T.; Gottweis, J.; et al. Toward expert-level medical question answering with large language models. Nat.
    Med. 2025, 31, 943–950.

  • 19.

    McDuff, D.; Schaekermann, M.; Tu, T.; et al. Towards accurate differential diagnosis with large language models. Nature
    2025, 642, 451–457.

  • 20.

    Williams, C.Y.; Miao, B.Y.; Kornblith, A.E.; et al. Evaluating the use of large language models to provide clinical
    recommendations in the Emergency Department. Nat. Commun. 2024, 15, 8236.

  • 21.

    Wu, X.; Huang, Y.; He, Q. A large language model improves clinicians’ diagnostic performance in complex critical illness
    cases. Crit. Care 2025, 29, 230.

  • 22.

    Perlis, R.H.; Goldberg, J.F.; Ostacher, M.J.; et al. Clinical decision support for bipolar depression using large language
    models. Neuropsychopharmacology 2024, 49, 1412–1416.

  • 23.

    Shashikumar, S.P.; Mohammadi, S.; Krishnamoorthy, R.; et al. Development and prospective implementation of a large
    language model based system for early sepsis prediction. NPJ Digit. Med. 2025, 8, 290.

  • 24.

    Kaygisiz, O .F.; Teke, M.T. Can deepseek and ChatGPT be used in the diagnosis of oral pathologies? BMC Oral Health
    2025, 25, 638.

  • 25.

    Zhang, J.; Liu, J.; Guo, M.; et al. DeepSeek-assisted LI-RADS classification: AI-driven precision in hepatocellular
    carcinoma diagnosis. Int. J. Surg. 2025, 111, 5970–5979.

  • 26.

    Leng, Y.; He, Y.; Amini, S.; et al. A GPT-4o-powered framework for identifying cognitive impairment stages in electronic
    health records. NPJ Digit. Med. 2025, 8, 401.

  • 27.

    Zhou, J.; He, X.; Sun, L.; et al. Pre-trained multimodal large language model enhances dermatological diagnosis using
    SkinGPT-4. Nat. Commun. 2024, 15, 5649.

  • 28.

    Oh, Y.; Park, S.; Byun, H.K.; et al. LLM-driven multimodal target volume contouring in radiation oncology. Nat. Commun.
    2024, 15, 9186.

  • 29.

    Li, J.; Guan, Z.; Wang, J.; et al. Integrated image-based deep learning and language models for primary diabetes care. Nat.
    Med. 2024, 30, 2886–2896.

  • 30.

    Tran, M.; Schmidle, P.; Guo, R.R.; et al. Generating dermatopathology reports from gigapixel whole slide images with
    HistoGPT. Nat. Commun. 2025, 16, 4886.

  • 31.

    Lu,M.Y.; Chen, B.;Williamson, D.F.; et al. Amultimodal generative AI copilot for human pathology. Nature 2024, 634, 466–473.

  • 32.

    Wu, Y.; Liu, Y.; Yang, Y.; et al. A concept-based interpretable model for the diagnosis of choroid neoplasias using
    multimodal data. Nat. Commun. 2025, 16, 3504.

  • 33.

    Hassanein, F.E.; El Barbary, A.; Hussein, R.R.; et al. Diagnostic Performance of ChatGPT-4o and DeepSeek-3
    Differential Diagnosis of Complex Oral Lesions: A Multimodal Imaging and Case Difficulty Analysis. Oral Dis. 2025.
    https://doi.org/10.1111/odi.70007.

  • 34.

    Tordjman, M.; Liu, Z.; Yuce, M.; et al. Comparative benchmarking of the DeepSeek large language model on medical tasks
    and clinical reasoning. Nat. Med. 2025, 31, 2550–2555.

  • 35.

    Chan, L.; Xu, X.; Lv, K. DeepSeek-R1 and GPT-4 are comparable in a complex diagnostic challenge: a historical control
    study. Int. J. Surg. 2025, 111, 4056–4059.

  • 36.

    Shean, R.; Shah, T.; Pandiarajan, A.; et al. A comparative analysis of DeepSeek R1, DeepSeek-R1-Lite, OpenAi o1 Pro,
    and Grok 3 performance on ophthalmology board-style questions. Sci. Rep. 2025, 15, 23101.

  • 37.

    Wu, J.; Wang, Z.; Qin, Y. Performance of DeepSeek-R1 and ChatGPT-4o on the Chinese national medical licensing
    examination: A vomparative atudy. J. Med. Syst. 2025, 49, 74.

  • 38.

    Shang, L.; Li, R.; Xue, M.; et al. Evaluating the application of ChatGPT in China’s residency training education: An
    exploratory study. Med. Teach. 2025, 47, 858–864.

  • 39.

    Luo, P.W.; Liu, J.W.; Xie, X.; et al. DeepSeek vs ChatGPT: A comparison study of their performance in answering prostate
    cancer radiotherapy questions in multiple languages. Am. J. Clin. Exp. Urol. 2025, 13, 176.

  • 40.

    Mahedia, M.; Rohrich, R.N.; Sadiq, K.O.; et al. Exploring the utility of chatgpt in cleft lip repair education. J. Clin. Med.
    2025, 14, 993.

  • 41.

    Rao, A.S.; Kim, J.; Mu, A.; et al. Synthetic medical education in dermatology leveraging generative artificial intelligence.
    NPJ Digit. Med. 2025, 8, 247.

  • 42.

    Wada, A.; Tanaka, Y.; Nishizawa, M.; et al. Retrieval-augmented generation elevates local LLM quality in radiology
    contrast media consultation. NPJ Digit. Med. 2025, 8, 395.

  • 43.

    Grevisse, C. LLM-based automatic short answer grading in undergraduate medical education. BMC Med. Educ. 2024, 24,
    1060.

  • 44.

    Hersh, W.; Fultz Hollis, K. Results and implications for generative AI in a large introductory biomedical and health
    informatics course. NPJ Digit. Med. 2024, 7, 247.

  • 45.

    Mizumoto, A.; Eguchi, M. Exploring the potential of using an AI language model for automated essay scoring. Res.
    Methods Appl. Linguist. 2023, 2, 100050.

  • 46.

    Jeblick, K.; Schachtner, B.; Dexl, J.; et al. ChatGPT makes medicine easy to swallow: an exploratory case study on
    simplified radiology reports. Eur. Radiol. 2024, 34, 2817–2825.

  • 47.

    Rust, P.; Frings, J.; Meister, S.; et al. Evaluation of a large language model to simplify discharge summaries and provide
    cardiological lifestyle recommendations. Commun. Med. 2025, 5, 208.

  • 48.

    Li, C.Y.; Chang, K.J.; Yang, C.F.; et al. Towards a holistic framework for multimodal LLM in 3D brain CT radiology report
    generation. Nat. Commun. 2025, 16, 2258.

  • 49.

    Yang, X.; Chen, A.; PourNejatian, N.; et al. A large language model for electronic health records. NPJ Digit. Med. 2022, 5, 194.

  • 50.

    Hein, D.; Christie, A.; Holcomb, M.; et al. Iterative refinement and goal articulation to optimize large language models for
    clinical information extraction. NPJ Digit. Med. 2025, 8, 301.

  • 51.

    Woo, E.G.; Burkhart, M.C.; Alsentzer, E.; et al. Synthetic data distillation enables the extraction of clinical information at
    scale. NPJ Digit. Med. 2025, 8, 267.

  • 52.

    Chua, C.E.; Clara, N.L.Y.; Furqan, M.S.; et al. Integration of customised LLM for discharge summary generation in
    real-world clinical settings: a pilot study on RUSSELL GPT. Lancet Reg. Health West. Pac. 2024, 51, 101211.

  • 53.

    Luo, Z.; Qiao, Y.; Xu, X.; et al. Cross sectional pilot study on clinical review generation using large language models. NPJ
    Digit. Med. 2025, 8, 170.

  • 54.

    Zhang, T.; Ma, L.; Cheng, S.; et al. Automatic prompt design via particle swarm optimization driven LLM for efficient
    medical information extraction. Swarm Evol. Comput. 2025, 95, 101922.

  • 55.

    Grothey, B.; Odenkirchen, J.; Brkic, A.; et al. Comprehensive testing of large language models for extraction of structured
    data in pathology. Commun. Med. 2025, 5, 96.

  • 56.

    Di Palma, L.; Darvizeh, F.; Al`ı, M.; et al. Structured Transformation of Unstructured Prostate MRI Reports Using Large
    Language Models. Tomography 2025, 11, 69.

  • 57.

    Kopka, M.; von Kalckreuth, N.; Feufel, M.A. Accuracy of online symptom assessment applications, large language models,
    and laypeople for self–triage decisions. NPJ Digit. Med. 2025, 8, 178.

  • 58.

    Ji, H.; Wang, X.; Sia, C.H.; et al. Large language model comparisons between English and Chinese query performance for
    cardiovascular prevention. Commun. Med. 2025, 5, 177.

  • 59.

    Chen, D.; Chauhan, K.; Parsa, R.; et al. Patient perceptions of empathy in physician and artificial intelligence chatbot
    responses to patient questions about cancer. NPJ Digit. Med. 2025, 8, 275.

  • 60.

    Geanta, M.; Badescu, D.; Chirca, N.; et al. The potential impact of large language models on doctor–patient communication:
    A case study in prostate cancer. Healthcare 2024, 12, 1548.

  • 61.

    Johri, S.; Jeong, J.; Tran, B.A.; et al. An evaluation framework for clinical use of large language models in patient
    interaction tasks. Nat. Med. 2025, 31, 77–86.

  • 62.

    Zhou, M.; Pan, Y.; Zhang, Y.; et al. Evaluating AI-generated patient education materials for spinal surgeries: Comparative
    analysis of readability and DISCERN quality across ChatGPT and deepseek models. Int. J. Med. Inform. 2025, 198, 105871.

  • 63.

    Gurbuz, S.; Bahar, H.; Yavuz, U.; et al. Comparative Efficacy of ChatGPT and DeepSeek in Addressing Patient Queries on
    Gonarthrosis and Total Knee Arthroplasty. Arthroplast. Today 2025, 33, 101730.

  • 64.

    Choudhury, A.; Shahsavar, Y.; Shamszare, H. User intent to use DeepSeek for health care purposes and their Ttrust in the
    large language model: Multinational survey study. JMIR Hum. Factors 2025, 12, e72867.

  • 65.

    Gultekin, O.; Inoue, J.; Yilmaz, B.; et al. Evaluating deepResearch and deepThink in anterior cruciate ligament surgery
    patient education: ChatGPT-4o excels in comprehensiveness, DeepSeek R1 leads in clarity and readability of orthopaedic
    information. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 3025–3031.

  • 66.

    Fernandez-Pichel, M.; Pichel, J.C.; Losada, D.E. Evaluating search engines and large language models for answering health
    questions. NPJ Digit. Med. 2025, 8, 153.

  • 67.

    Wan, P.; Huang, Z.; Tang, W.; et al. Outpatient reception via collaboration between nurses and a large language model: a
    randomized controlled trial. Nat. Med. 2024, 30, 2878–2885.

  • 68.

    Peng, D.; Zheng, L.; Liu, D.; et al. Large-language models facilitate discovery of the molecular signatures regulating sleep
    and activity. Nat. Commun. 2024, 15, 3685.

  • 69.

    Li, W.; Jiang, X.; Wang, W.; et al. Discovering CRISPR-Cas system with self-processing pre-crRNA capability by
    foundation models. Nat. Commun. 2024, 15, 10024.

  • 70.

    Liu, W.; Li, J.; Tang, Y.; et al. DrBioRight 2.0: an LLM-powered bioinformatics chatbot for large-scale cancer functional
    proteomics analysis. Nat. Commun. 2025, 16, 2256.

  • 71.

    Penic, R.J.; Vlasi´c, T.; Huber, R.G.; et al. Rinalmo: General-purpose rna language models can generalize well on structure
    prediction tasks. Nat. Commun. 2025, 16, 5671.

  • 72.

    Hu, M.; Alkhairy, S.; Lee, I.; et al. Evaluation of large language models for discovery of gene set function. Nat. Methods
    2025, 22, 82–91.

  • 73.

    Chen, Y.; Zou, J. Simple and effective embedding model for single-cell biology built from chatgpt. Nat. Biomed. Eng.
    2025, 9, 483–493.

  • 74.

    Li, T.; Shetty, S.; Kamath, A.; et al. CancerGPT for few shot drug pair synergy prediction using large pretrained language
    models. NPJ Digit. Med. 2024, 7, 40.

  • 75.

    Liu, T.; Chu, T.; Luo, X.; et al. Building a unified model for drug synergy analysis powered by large language models. Nat.
    Commun. 2025, 16, 4537.

  • 76.

    Jin, Q.; Wang, Z.; Floudas, C.S.; et al. Matching patients to clinical trials with large language models. Nat. Commun. 2024,
    15, 9074.

  • 77.

    Memon, T.D.; Kwan, P. A collaborative model for integrating Tteacher and genAI into future education. TechTrends 2025, 1–15.
    https://doi.org/10.1007/s11528-025-01105-w.

  • 78.

    Bizel-Bizellot, G.; Galmiche, S.; Lelandais, B.; et al. Extracting circumstances of Covid-19 transmission from free text
    with large language models. Nat. Commun. 2025, 16, 5836.

  • 79.

    Schuemie, M.J.; Ostropolets, A.; Zhuk, A.; et al. Standardized patient profile review using large language models for case
    adjudication in observational research. NPJ Digit. Med. 2025, 8, 18.

  • 80.

    Lai, H.; Liu, J.; Bai, C.; et al. Language models for data extraction and risk of bias assessment in complementary medicine.
    NPJ Digit. Med. 2025, 8, 74.

  • 81.

    Du, H.; Zhao, Y.; Zhao, J.; et al. Advancing real-time infectious disease forecasting using large language models. Nat.
    Comput. Sci. 2025, 5, 467–480.

  • 82.

    Wu, C.; Lin, W.; Zhang, X.; et al. PMC-LLaMA: toward building open-source language models for medicine. J. Am. Med.
    Inform. Assoc. 2024, 31, 1833–1843.

  • 83.

    Peng, C.; Yang, X.; Chen, A.; et al. A study of generative large language model for medical research and healthcare. NPJ
    Digit. Med. 2023, 6, 210.

  • 84.

    Zeng, D.; Qin, Y.; Sheng, B.; et al. DeepSeek’s “Low-Cost” adoption across China’s hospital systems: Too fast, too soon?
    JAMA 2025, 333, 1866–1869.

  • 85.

    Deng, Z.; Ma, W.; Han, Q.L.; et al. Exploring DeepSeek: A Survey on advances, applications, challenges and future
    Directions. IEEE/CAA J. Autom. Sin. 2025, 12, 872–893.

  • 86.

    Sandmann, S.; Hegselmann, S.; Fujarski, M.; et al. Benchmark evaluation of DeepSeek large language models in clinical
    decision-making. Nat. Med. 2025, 31, 2546–2549.

  • 87.

    Tam, T.Y.C.; Sivarajkumar, S.; Kapoor, S.; et al. A framework for human evaluation of large language models in healthcare
    derived from literature review. NPJ Digit. Med. 2024, 7, 258.

  • 88.

    Xie, Q.; Chen, Q.; Chen, A.; et al. Medical foundation large language models for comprehensive text analysis and beyond.
    NPJ Digit. Med. 2025, 8, 141.

  • 89.

    Qiu, P.; Wu, C.; Zhang, X.; et al. Towards building multilingual language model for medicine. Nat. Commun. 2024, 15, 8384.

  • 90.

    Perez-Garcia, F.; Sharma, H.; Bond-Taylor, S.; et al. Exploring scalable medical image encoders beyond text supervision.
    Nat. Mach. Intell. 2025, 7, 119–130.

  • 91.

    Tran, M.; Balasooriya, C.; Jonnagaddala, J.; et al. Situating governance and regulatory concerns for generative artificial
    intelligence and large language models in medical education. NPJ Digit. Med. 2025, 8, 315.

  • 92.

    Liu, F.; Zhou, H.; Gu, B.; et al. Application of large language models in medicine. Nat. Rev. Bioeng. 2025, 3, 445–464.

  • 93.

    Griot, M.; Hemptinne, C.; Vanderdonckt, J.; et al. Large language models lack essential metacognition for reliable medical
    reasoning. Nat. Commun. 2025, 16, 642.

  • 94.

    Kim, H.; Hwang, H.; Lee, J.; et al. Small language models learn enhanced reasoning skills from medical textbooks. NPJ
    Digit. Med. 2025, 8, 240.

  • 95.

    Ferber, D.; Wiest, I.C.; Wolflein, G.; et al. GPT-4 for information retrieval and comparison of medical oncology guidelines.
    Nejm Ai 2024, 1, AIcs2300235.

  • 96.

    Wang, L.; Chen, X.; Deng, X.; et al. Prompt engineering in consistency and reliability with the evidence-based guideline
    for LLMs. NPJ Digit. Med. 2024, 7, 41.

  • 97.

    Zhang, G.; Xu, Z.; Jin, Q.; et al. Leveraging long context in retrieval augmented language models for medical question
    answering. NPJ Digit. Med. 2025, 8, 239.

  • 98.

    Wu, K.; Wu, E.; Wei, K.; et al. An automated framework for assessing how well LLMs cite relevant medical references.
    Nat. Commun. 2025, 16, 3615.

  • 99.

    Bouguettaya, A.; Stuart, E.M.; Aboujaoude, E. Racial bias in AI-mediated psychiatric diagnosis and treatment: a qualitative
    comparison of four large language models. NPJ Digit. Med. 2025, 8, 332.

  • 100.

    Omar, M.; Soffer, S.; Agbareia, R.; et al. Sociodemographic biases in medical decision making by large language models.
    Nat. Med. 2025, 31, 1873–1881.

  • 101.

    Templin, T.; Fort, S.; Padmanabham, P.; et al. Framework for bias evaluation in large language models in healthcare settings.
    NPJ Digit. Med. 2025, 8, 414.

  • 102.

    Chen, X.; Wang, T.; Zhou, J.; et al. Evaluating and mitigating bias in AI-based medical text generation. Nat. Comput. Sci.
    2025, 5, 388–396.

  • 103.

    Alber, D.A.; Yang, Z.; Alyakin, A.; et al. Medical large language models are vulnerable to data-poisoning attacks. Nat.
    Med. 2025, 31, 618–626.

  • 104.

    Yang, J.; Xu, H.; Mirzoyan, S.; et al. Poisoning medical knowledge using large language models. Nat. Mach. Intell. 2024, 6,
    1156–1168.

  • 105.

    Pfohl, S.R.; Cole-Lewis, H.; Sayres, R.; et al. A toolbox for surfacing health equity harms and biases in large language
    models. Nat. Med. 2024, 30, 3590–3600.

  • 106.

    Hager, P.; Jungmann, F.; Holland, R.; et al. Evaluation and mitigation of the limitations of large language models in clinical
    decision-making. Nat. Med. 2024, 30, 2613–2622.

  • 107.

    Goh, E.; Bunning, B.; Khoong, E.C.; et al. Physician clinical decision modification and bias assessment in a randomized
    controlled trial of AI assistance. Commun. Med. 2025, 5, 59.

  • 108.

    Fares, M.H.; Saad, A.M.S.E. Towards Privacy-Preserving Medical Imaging: Federated Learning with Differential Privacy
    and Secure Aggregation Using a Modified ResNet Architecture. arXiv 2024, arXiv:2412.00687.

  • 109.

    Zhao, H.; Sui, D.; Wang, Y.; et al. Privacy-Preserving Federated Learning Framework for Multi-Source Electronic Health
    Records Prognosis Prediction. Sensors 2025, 25, 2374.

  • 110.

    Teo, Z.L.; Jin, L.; Liu, N.; et al. Federated machine learning in healthcare: A systematic review on clinical applications and
    technical architecture. Cell Rep. Med. 2024, 5, 101419.

Share this article:
How to Cite
Chen, Z.; Lu, Y.; Zeng, Y.; Tian, D.; Li, Y.; Li, F. Large Language Models in Medicine: Application Status and Challenges. AI Medicine 2025, 2 (2), 8. https://doi.org/10.53941/aim.2025.100008.
RIS
BibTex
Copyright & License
article copyright Image