2512002459
  • Open Access
  • Review

A Short Survey on Lung Cancer Diagnosis Based on CT Imaging and Artificial Intelligence

  • Baihua Zhang 1,*,   
  • Yu Wang 2

Received: 15 Oct 2025 | Revised: 20 Nov 2025 | Accepted: 05 Dec 2025 | Published: 09 Dec 2025

Abstract

Lung cancer is one of the most prevalent and lethal malignant tumors globally, characterized by high morbidity and mortality rates. Early diagnosis is crucial for enhancing treatment efficacy, reducing mortality, and improving patients’ quality of life. Traditional manual interpretation of computed tomography (CT) images—the primary screening tool for lung cancer—is often limited by subjectivity, heavy workload, and potential missed diagnoses. Artificial Intelligence (AI) methodologies have emerged as indispensable assets for radiologists, empowering them to conduct in-depth analyses of lung CT scans. This technology facilitates a more streamlined and unbiased evaluation of anatomical structures and pathological features depicted in chest CT images. Driven by advances in deep learning models such as convolutional neural networks (CNNs), the accuracy and robustness of AI methods for lung cancer diagnosis have been significantly improved, providing reliable references for clinical practice. This paper presents a brief review of the applications of AI methods in lung cancer diagnosis based on CT imaging in recent years. It systematically organizes and elaborates on the applications of AI methods represented by deep learning in pulmonary nodule detection, lung tumor segmentation, benign-malignant classification of lung cancer, and lung cancer-related gene mutation detection. Additionally, it analyzes the performance of different models on relevant datasets. Furthermore, the limitations of AI in CT imaging-based lung cancer diagnosis and future research directions are summarized. Through this survey, we aim to provide a concise and comprehensive overview of the current status of lung cancer diagnosis using CT-AI integrated systems, and ultimately promote the development and clinical application of these technologies in the early and accurate detection of lung cancer.

References 

  • 1.

    Bray, F.; Laversanne, M.; Sung, H.; et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263.

  • 2.

    The, L. Lung cancer treatment: 20 years of progress. Lancet 2024, 403, 2663.

  • 3.

    Han, B.; Zheng, R.; Zeng, H.; et al. Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 2024, 4, 47–53.

  • 4.

    Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 1563–1579.

  • 5.

    Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J. Thorac. Oncol. 2022, 17, 362–387.

  • 6.

    Kanwal, M.; Ding, X.J.; Cao, Y. Familial risk for lung cancer. Oncol. Lett. 2017, 13, 535–542.

  • 7.

    Panunzio, A.; Sartori, P. Lung Cancer and Radiological Imaging. Curr. Radiopharm. 2020, 13, 238–242.

  • 8.

    Migliore, M.; Palmucci, S.; Nardini, M.; et al. Imaging patterns of early stage lung cancer for the thoracic surgeon. J. Thorac. Dis. 2020, 12, 3349–3356.

  • 9.

    Li, N.; Tan, F.; Chen, W.; et al. One-off low-dose CT for lung cancer screening in China: A multicentre, population-based, prospective cohort study. Lancet Respir. Med. 2022, 10, 378–391.

  • 10.

    Lancaster, H.L.; Heuvelmans, M.A.; Oudkerk, M. Low-dose computed tomography lung cancer screening: Clinical evidence and implementation research. J. Intern. Med. 2022, 292, 68–80.

  • 11.

    de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513.

  • 12.

    Henschke, C.I.; Yip, R.; Salvatore, M.; et al. The Regimen of Computed Tomography Screening for Lung Cancer: Lessons Learned Over 25 Years from the International Early Lung Cancer Action Program. J. Thorac. Imaging 2021, 36, 6–23.

  • 13.

    Nihashi, T.; Matsuura, N.; Kawamata, T.; et al. Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS. JPN J. Radiol. 2019, 37, 437–448.

  • 14.

    Klang, E. Deep learning and medical imaging. J. Thorac. Dis. 2018, 10, 1325–1328.

  • 15.

    Lawson, C.E.; Martí, J.M.; Radivojevic, T.; et al. Machine learning for metabolic engineering: A review. Metab. Eng. 2021, 63, 34–60.

  • 16.

    Hwang, E.J.; Park, C.M. Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges. Korean J. Radiol. 2020, 21, 511–525.

  • 17.

    Warraich, H.J.; Tazbaz, T.; Califf, R.M. FDA Perspective on the Regulation of Artificial Intelligence in Health Care and Biomedicine. JAMA 2025, 333, 241–247.

  • 18.

    Zhang, H.; Wang, L.; Li, X.; et al. The application of artificial intelligence in lung cancer: A narrative review. Transl. Cancer Res. 2021, 10, 2478–2487.

  • 19.

    Bidzinska, J.; Szurowska, E. See Lung Cancer with an AI. Cancers 2023, 15, 1321.

  • 20.

    Adams, S.J.; Bredin, A.; Ireland, A.; et al. Lung cancer screening. Lancet 2023, 401, 390–408.

  • 21.

    Goncalves, S.; Fong, P.C.; Blokhina, M.; et al. Artificial intelligence for early diagnosis of lung cancer through incidental nodule detection in low- and middle-income countries-acceleration during the COVID-19 pandemic but here to stay. Am. J. Cancer Res. 2022, 12, 1–16.

  • 22.

    Manafi-Farid, R.; Ataei, G.; Pirich, C.; et al. [18F]FDG-PET/CT Radiomics and Artificial Intelligence in Lung Cancer: Technical Aspects and Potential Clinical Applications. Semin. Nucl. Med. 2022, 52, 759–780.

  • 23.

    Lu, S.Y.; Zhu, Z.; Zhang, Y.D.; et al. Tuberculosis and pneumonia diagnosis in chest X-rays by large adaptive filter and aligning normalized network with report-guided multi-level alignment. Eng. Appl. Artif. Intell. 2025, 158, 111576.

  • 24.

    Lu, S.Y.; Zhu, Z.; Tang, Y.; et al. CTBViT: A novel ViT for tuberculosis classification with efficient block and randomized classifier. Biomed. Signal Process. Control 2025, 100, 106981.

  • 25.

    Zhu, Z.; Liu, L.; Free, R.C.; et al. OPT-CO: Optimizing pre-trained transformer models for efficient COVID-19 classification with stochastic configuration networks. Inf. Sci. 2024, 680, 121141.

  • 26.

    Zhu, Z.; Lu, S.Y.; Huang, T.; et al. LKA: Large Kernel Adapter for Enhanced Medical Image Classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2025.

  • 27.

    Kalchiem-Dekel, O.; Connolly, J.G.; Lin, I.H.; et al. Shape-Sensing Robotic-Assisted Bronchoscopy in the Diagnosis of Pulmonary Parenchymal Lesions. Chest 2022, 161, 572–582.

  • 28.

    Zheng, X.; He, B.; Hu, Y.; et al. Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 938113.

  • 29.

    Mao, Y.; Xu, N.; Wu, Y.; et al. Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images. Cell Rep. Med. 2025, 6, 101988.

  • 30.

    Niu, C.; Guo, Y.; Tian, S.; et al. Medical multimodal multitask foundation model for lung cancer screening. Nat. Commun. 2025, 16, 1523.

  • 31.

    Guo, J.; Miao, J.; Sun, W.; et al. Predicting bone metastasis-free survival in non-small cell lung cancer from preoperative CT via deep learning. NPJ Precis. Oncol. 2024, 8, 161.

  • 32.

    Chiu, H.-Y.; Chao, H.-S.; Chen, Y.-M. Application of artificial intelligence in lung cancer. Cancers 2022, 14, 1370.

  • 33.

    Kotoulas, S.C.; Spyratos, D.; Porpodis, K.; et al. A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer. Cancers 2025, 17, 882.

  • 34.

    Huang, J.; Xiang, Y.; Gan, S.; et al. Application of artificial intelligence in medical imaging for tumor diagnosis and treatment: A comprehensive approach. Discov. Oncol. 2025, 16, 1–23.

  • 35.

    Ayasa, Y.; Alajrami, D.; Idkedek, M.; et al. The Impact of Artificial Intelligence on Lung Cancer Diagnosis and Personalized Treatment. Int. J. Mol. Sci. 2025, 26, 8472.

  • 36.

    Armato, S.G., III; McLennan, G.; Bidaut, L.; et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931.

  • 37.

    Hosny, A.; Parmar, C.; Coroller, T.P.; et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med. 2018, 15, e1002711.

  • 38.

    Black, W.C.; Keeler, E.B.; Soneji, S.S. Cost-effectiveness of CT screening in the National Lung Screening Trial. N. Engl. J. Med. 2015, 372, 388.

  • 39.

    Setio, A.A.A.; Traverso, A.; de Bel, T.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13.

  • 40.

    de Margerie-Mellon, C.; Chassagnon, G. Artificial intelligence: A critical review of applications for lung nodule and lung cancer. Diagn. Interv. Imaging 2023, 104, 11–17.

  • 41.

    Cellina, M.; Ce, M.; Irmici, G.; et al. Artificial Intelligence in Lung Cancer Screening: The Future Is Now. Cancers 2023, 15, 4290.

  • 42.

    Gu, D.; Liu, G.; Xue, Z. On the performance of lung nodule detection, segmentation and classification. Comput. Med. Imaging Graph. 2021, 89, 101886.

  • 43.

    Li, L.; Liu, Z.; Huang, H.; et al. Evaluating the performance of a deep learning-based computer-aided diagnosis (DL-CAD) system for detecting and characterizing lung nodules: Comparison with the performance of double reading by radiologists. Thorac. Cancer 2019, 10, 183–192.

  • 44.

    Duranti, L.; Ceccarelli, L.; Milano, M.; et al. New Perspectives on Lung Cancer Screening and Artificial Intelligence. Life 2025, 15, 498.

  • 45.

    Jiang, Q.; Wang, Y.; Zhang, T.; et al. High-resolution computed tomography with 1024-matrix for artificial intelligence-based computer-aided diagnosis in the evaluation of pulmonary nodules. J. Thorac. Dis. 2025, 17, 289–298.

  • 46.

    Jiang, Q.; Sun, H.; Deng, W.; et al. Super Resolution of Pulmonary Nodules Target Reconstruction Using a Two-Channel GAN Models. Acad. Radiol. 2024, 31, 3427–3437.

  • 47.

    Park, S.; Lee, S.M.; Kim, W.; et al. Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction. Radiology 2021, 299, 211–219.

  • 48.

    Primakov, S.P.; Wu, G.; Ibrahim, A.; et al. Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nat. Commun. 2022, 13, 3423.

  • 49.

    Liu, W.; Liu, X.; Li, H.; et al. Integrating Lung Parenchyma Segmentation and Nodule Detection with Deep Multi-Task Learning. IEEE J. Biomed. Health Inform. 2021, 25, 3073–3081.

  • 50.

    Zhou, Z.; Gou, F.; Tan, Y.; et al. A Cascaded Multi-Stage Framework for Automatic Detection and Segmentation of Pulmonary Nodules in Developing Countries. IEEE J. Biomed. Health Inform. 2022, 26, 5619–5630.

  • 51.

    Han, Y.; Qi, H.; Wang, L.; et al. Pulmonary nodules detection assistant platform: An effective computer aided system for early pulmonary nodules detection in physical examination. Comput. Methods Programs Biomed. 2022, 217, 106680.

  • 52.

    Song, W.; Tang, F.; Marshall, H.; et al. A multiscale 3D network for lung nodule detection using flexible nodule modeling. Med. Phys. 2024, 51, 7356–7368.

  • 53.

    Bhatia, I.; Aarti; Ansarullah, S.I.; et al. Lightweight Advanced Deep Neural Network (DNN) Model for Early-Stage Lung Cancer Detection. Diagnostics 2024, 14, 2356.

  • 54.

    Karimullah, S.; Khan, M.; Shaik, F.; et al. An integrated method for detecting lung cancer via CT scanning via optimization, deep learning, and IoT data transmission. Front. Oncol. 2024, 14, 1435041.

  • 55.

    Huang, Y.S.; Chou, P.R.; Chen, H.M.; et al. One-stage pulmonary nodule detection using 3-D DCNN with feature fusion and attention mechanism in CT image. Comput. Methods Programs Biomed. 2022, 220, 106786.

  • 56.

    Xu, J.; Ren, H.; Cai, S.; et al. An improved faster R-CNN algorithm for assisted detection of lung nodules. Comput. Biol. Med. 2023, 153, 106470.

  • 57.

    Cai, J.; Wang, L.; Cai, J.; et al. Contactless Intelligent Anti-interference Lung Nodule Detection Method for Early Disease Detection. IEEE J. Biomed. Health Inform. 2025, 1–12. https://doi.org/10.1109/JBHI.2025.3550199.

  • 58.

    Zamanidoost, Y.; Ould-Bachir, T.; Martel, S. OMS-CNN: Optimized Multi-Scale CNN for Lung Nodule Detection Based on Faster R-CNN. IEEE J. Biomed. Health Inform. 2025, 29, 2148–2160.

  • 59.

    Lancaster, H.L.; Jiang, B.; Davies, M.P.A.; et al. Histological proven AI performance in the UKLS CT lung cancer screening study: Potential for workload reduction. Eur. J. Cancer 2025, 220, 115324.

  • 60.

    Jarnalo, C.O.M.; Linsen, P.V.M.; Blazís, S.P.; et al. Clinical evaluation of a deep-learning-based computer-aided detection system for the detection of pulmonary nodules in a large teaching hospital. Clin. Radiol. 2021, 76, 838–845.

  • 61.

    Gao, J.; Qi, Q.; Li, H.; et al. Artificial-intelligence-based computed tomography histogram analysis predicting tumor invasiveness of lung adenocarcinomas manifesting as radiological part-solid nodules. Front. Oncol. 2023, 13, 1096453.

  • 62.

    Dong, X.; Xu, S.; Liu, Y.; et al. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation. Cancer Imaging 2020, 20, 53.

  • 63.

    Suzuki, K.; Otsuka, Y.; Nomura, Y.; et al. Development and Validation of a Modified Three-Dimensional U-Net Deep-Learning Model for Automated Detection of Lung Nodules on Chest CT Images from the Lung Image Database Consortium and Japanese Datasets. Acad. Radiol. 2022, 29, S11–S17.

  • 64.

    Bruntha, P.M.; Pandian, S.I.A.; Sagayam, K.M.; et al. Lung_PAYNet: A pyramidal attention based deep learning network for lung nodule segmentation. Sci. Rep. 2022, 12, 20330.

  • 65.

    Zhang, B.; Qi, S.; Wu, Y.; et al. Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images. Comput. Methods Programs Biomed. 2022, 222, 106946.

  • 66.

    Erasmus, J.J.; Gladish, G.W.; Broemeling, L.; et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: Implications for assessment of tumor response. J. Clin. Oncol. 2003, 21, 2574–2582.

  • 67.

    Kim, H.; Goo, J.M.; Lee, K.H.; et al. Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas. Radiology 2020, 296, 216–224.

  • 68.

    Ohno, Y.; Aoyagi, K.; Yaguchi, A.; et al. Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional Neural Network to Determine Volume Change at Chest CT. Radiology 2020, 296, 432–443.

  • 69.

    Hunter, B.; Chen, M.; Ratnakumar, P.; et al. A radiomics-based decision support tool improves lung cancer diagnosis in combination with the Herder score in large lung nodules. EBioMedicine 2022, 86, 104344.

  • 70.

    Gugulothu, V.K.; Balaji, S. An early prediction and classification of lung nodule diagnosis on CT images based on hybrid deep learning techniques. Multimed. Tools Appl. 2023, 83, 12571–12591.

  • 71.

    Banu, S.F.; Sarker, M.M.K.; Abdel-Nasser, M.; et al. AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation. Sci. Rep. 2021, 11, 10132.

  • 72.

    Dlamini, S.; Chen, Y.-H.; Kuo, C.-F.J. Complete fully automatic detection, segmentation and 3D reconstruction of tumor volume for non-small cell lung cancer using YOLOv4 and region-based active contour model. Expert Syst. Appl. 2023, 212, 118661.

  • 73.

    Rikhari, H.; Baidya Kayal, E.; Ganguly, S.; et al. Improving lung nodule segmentation in thoracic CT scans through the ensemble of 3D U-Net models. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 2089–2099.

  • 74.

    Massion, P.P.; Antic, S.; Ather, S.; et al. Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules. Am. J. Respir. Crit. Care Med. 2020, 202, 241–249.

  • 75.

    Masood, A.; Sheng, B.; Yang, P.; et al. Automated Decision Support System for Lung Cancer Detection and Classification via Enhanced RFCN With Multilayer Fusion RPN. IEEE Trans. Ind. Inform. 2020, 16, 7791–7801.

  • 76.

    Heuvelmans, M.A.; van Ooijen, P.M.A.; Ather, S.; et al. Lung cancer prediction by Deep Learning to identify benign lung nodules. Lung Cancer 2021, 154, 1–4.

  • 77.

    Liu, J.; Qi, L.; Xu, Q.; et al. A Self-supervised Learning-Based Fine-Grained Classification Model for Distinguishing Malignant from Benign Subcentimeter Solid Pulmonary Nodules. Acad. Radiol. 2024, 31, 4687–4695.

  • 78.

    Zhang, J.; Yang, M.; Guo, W.; et al. Detection-guided deep learning-based model with spatial regularization for lung nodule segmentation. Quant. Imaging Med. Surg. 2025, 15, 4204–4216.

  • 79.

    Zhao, W.; Liao, W.; Tang, Y.; et al. Lung Cancer Screening Classification by Sequential Multi-Instance Learning (SMILE) Framework with Multiple CT Scans. IEEE Trans. Med. Imaging 2025, 44, 3151–3161.

  • 80.

    Wang, M.; Gu, Y.; Yang, L.; et al. A novel high-precision bilevel optimization method for 3D pulmonary nodule classification. Phys. Med. 2025, 133, 104954.

  • 81.

    Jin, H.; Yu, C.; Zhang, J.; et al. Multitask Swin Transformer for classification and characterization of pulmonary nodules in CT images. Quant. Imaging Med. Surg. 2025, 15, 1845–1861.

  • 82.

    Ibrahim, D.M.; Elshennawy, N.M.; Sarhan, A.M. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput. Biol. Med. 2021, 132, 104348.

  • 83.

    Zhou, J.; Hu, B.; Feng, W.; et al. An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT. NPJ Digit. Med. 2023, 6, 119.

  • 84.

    Du, L.; Tang, G.; Che, Y.; et al. Fusing radiomics and deep learning features for automated classification of multi-type pulmonary nodule. Med. Phys. 2025, 52, e17901.

  • 85.

    Wang, S.; Shi, J.; Ye, Z.; et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur. Respir. J. 2019, 53, 1800986.

  • 86.

    de Margerie-Mellon, C.; Gill, R.R.; Salazar, P.; et al. Assessing invasiveness of subsolid lung adenocarcinomas with combined attenuation and geometric feature models. Sci. Rep. 2020, 10, 14585.

  • 87.

    Wang, S.; Yu, H.; Gan, Y.; et al. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: A multicohort study. Lancet Digit. Health 2022, 4, e309–e319.

  • 88.

    Zhao, S.; Li, W.; Liu, Z.; et al. End-to-End Prediction of EGFR Mutation Status with Denseformer. IEEE J. Biomed. Health Inform. 2024, 28, 54–65.

  • 89.

    Xiao, Z.; Cai, H.; Wang, Y.; et al. Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images. Quant. Imaging Med. Surg. 2023, 13, 1286–1299.

  • 90.

    Kim, S.; Lim, J.H.; Kim, C.H.; et al. Deep learning–radiomics integrated noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients. Sci. Rep. 2024, 14, 922.

  • 91.

    Lu, Y.; Liu, F.; Yu, Y.; et al. AI-enabled molecular phenotyping and prognostic predictions in lung cancer through multimodal clinical information integration. Cell Rep. Med. 2025, 6, 102216.

  • 92.

    Dong, Y.; Hou, L.; Yang, W.; et al. Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images. Quant. Imaging Med. Surg. 2021, 11, 2354–2375.

  • 93.

    Hinzpeter, R.; Kulanthaivelu, R.; Kohan, A.; et al. Predictive [18F]-FDG PET/CT-Based Radiogenomics Modelling of Driver Gene Mutations in Non-small Cell Lung Cancer. Acad. Radiol. 2024, 31, 5314–5323.

  • 94.

    Adnan, K.M.; Ghazal, T.M.; Saleem, M.; et al. Secure and interpretable lung cancer prediction model using mapreduce private blockchain federated learning and XAI. Sci. Rep. 2025, 15, 35693.

  • 95.

    Chen, Y.; Liu, L.; Feng, B.; et al. A meta-learning-based robust federated learning for diagnosing lung adenocarcinoma and tuberculosis granulomas. Front. Oncol. 2025, 15, 1666937.

Share this article:
How to Cite
Zhang, B.; Wang, Y. A Short Survey on Lung Cancer Diagnosis Based on CT Imaging and Artificial Intelligence. AI Medicine 2025, 2 (2), 9. https://doi.org/10.53941/aim.2025.100009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.