2511002297
  • Open Access
  • Review

Technological Advances and Methodologies in Liquid Biopsy: An Updated Review

  • Shrinit Babel 1,2,*,   
  • Ronald S. Chamberlain 3

Received: 06 Aug 2025 | Revised: 30 Sep 2025 | Accepted: 17 Nov 2025 | Published: 07 Jan 2026

Abstract

Purpose: Liquid biopsy enables the non-invasive assessment of cancer by enabling real-time monitoring of tumor biology through particular biomarkers. Advancements in this fast-evolving approach are mainly dependent on the developments in the technology used to procure, obtain, and analyze key liquid biopsy markers. Methods: We conduct a comprehensive review of literature from 2018 to 2023 using PubMed and Google Scholar. Studies focused on advancements in liquid biopsy technologies, including ctDNA, CTC analysis, extracellular vesicles, methylation pattern detection, RNA biomarkers, and the integration of artificial intelligence. Key challenges and merging methodologies to overcome existing limitations were identified and discussed. Results: Next-generation sequencing (NGS) and digital droplet PCR have stronger precision in detecting ctDNA at lower concentrations, improving early cancer detection and monitoring of minimal residual disease (MRD). Newer techniques like targeted error correction sequencing (TEC-seq) and RNA biomarker profiling improve the cost-effectiveness while maintaining fidelity in detecting rare mutations. Microfluidic platforms provide a structured platform for isolating CTCs and extracellular vesicles, which can be integrated into AI platforms to improve diagnostic precision and treatment management. Conclusion: Newer technologies are more effective in capturing tumor heterogeneity and provide better, earlier accuracy. Future innovations are being shaped by artificial intelligence-integrated platforms to enhance the granularity of liquid biopsy.

References 

  • 1.

    Adhit, K.K.; Wanjari, A.; Menon, S.; et al. Liquid Biopsy: An Evolving Paradigm for Non-invasive Disease Diagnosis and Monitoring in Medicine. Cureus 2023, 15. https://doi.org/10.7759/cureus.50176.

  • 2.

    Lone, S.N.; Nisar, S.; Masoodi, T.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. https://doi.org/10.1186/s12943-022-01543-7.

  • 3.

    Lee, B.; Cohen, J.; Lipton, L.R.; et al. Potential role of circulating tumor DNA (ctDNA) in the early diagnosis and post-operative management of localised pancreatic cancer. J. Clin. Oncol. 2017, 35, 4101. https://doi.org/10.1200/JCO.2017.35.15_suppl.4101.

  • 4.

    Connal, S.; Cameron, J.M.; Sala, A.; et al. Liquid biopsies: The future of cancer early detection. J. Transl. Med. 2023, 21, 118. https://doi.org/10.1186/s12967-023-03960-8.

  • 5.

    Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. https://doi.org/10.1186/s13045-022-01351-y.

  • 6.

    Albitar, M.; Zhang, H.; Ip, A.; et al. Distinguishing between cancer-related mutations and clonal hematopoiesis using cell-free RNA (cfRNA) expression levels in a machine learning model. J. Clin. Oncol. 2023, 41, 3043–3043. https://doi.org/10.1200/JCO.2023.41.16_suppl.3043.

  • 7.

    Ju, S.; Chen, C.; Zhang, J.; et al. Detection of circulating tumor cells: Opportunities and challenges. Biomark. Res. 2022, 10, 58. https://doi.org/10.1186/s40364-022-00403-2.

  • 8.

    Kurniali, P.C.; Storandt, M.H.; Jin, Z. Utilization of Circulating Tumor Cells in the Management of Solid Tumors. J. Pers. Med. 2023, 13, 694. https://doi.org/10.3390/jpm13040694.

  • 9.

    Garcia, J.; Kamps-Hughes, N.; Geiguer, F.; et al. Sensitivity, specificity, and accuracy of a liquid biopsy approach utilizing molecular amplification pools. Sci. Rep. 2021, 11, 10761. https://doi.org/10.1038/s41598-021-89592-8.

  • 10.

    Batool, S.M.; Yekula, A.; Khanna, P.; et al. The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Rep. Med. 2023, 4, 101198. https://doi.org/10.1016/j.xcrm.2023.101198.

  • 11.

    Sánchez-Calderón, D.; Pedraza, A.; Mancera Urrego, C.; et al. Analysis of the Cost-Effectiveness of Liquid Biopsy to Determine Treatment Change in Patients with Her2-Positive Advanced Breast Cancer in Colombia. Clin. Outcomes Res. 2020, 12, 115–122. https://doi.org/10.2147/CEOR.S220726.

  • 12.

    Aziz, Z.; Wagner, S.; Agyekum, A.; et al. Cost-Effectiveness of Liquid Biopsy for Colorectal Cancer Screening in Patients Who Are Unscreened. JAMA Network Open 2023, 6, e2343392. https://doi.org/10.1001/jamanetworkopen.2023.43392.

  • 13.

    Armakolas, A.; Kotsari, M.; Koskinas, J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers 2023, 15, 1579. https://doi.org/10.3390/cancers15051579.

  • 14.

    Irmer, B.; Chandrabalan, S.; Maas, L.; et al. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers 2023, 15, 1307. https://doi.org/10.3390/cancers15041307.

  • 15.

    Latifkar, A.; Hur, Y.H.; Sanchez, J.C.; et al. New insights into extracellular vesicle biogenesis and function. J. Cell Sci. 2019, 132, jcs222406. https://doi.org/10.1242/jcs.222406.

  • 16.

    Herrera, M.; Galindo-Pumariño, C.; García-Barberán, V.; et al. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int. J. Mol. Sci. 2019, 20, 6016. https://doi.org/10.3390/ijms20236016.

  • 17.

    Logozzi, M.; Di Raimo, R.; Mizzoni, D.; et al. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzymol. 2020, 645, 155–180. https://doi.org/10.1016/bs.mie.2020.06.011.

  • 18.

    Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; et al. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Res. Int. 2018, 2018, 8545347. https://doi.org/10.1155/2018/8545347.

  • 19.

    Casadei, L.; Sarchet, P.; de Faria, F.C.C.; et al. In situ hybridization to detect DNA amplification in extracellular vesicles. J. Extracell. Vesicles 2022, 11, e12251. https://doi.org/10.1002/jev2.12251.

  • 20.

    Talebjedi, B.; Tasnim, N.; Hoorfar, M.; et al. Exploiting Microfluidics for Extracellular Vesicle Isolation and Characterization: Potential Use for Standardized Embryo Quality Assessment. Front. Vet. Sci. 2021, 7, 620809. https://doi.org/10.3389/fvets.2020.620809.

  • 21.

    Oesterreicher, J.; Pultar, M.; Schneider, J.; et al. Fluorescence-Based Nanoparticle Tracking Analysis and Flow Cytometry for Characterization of Endothelial Extracellular Vesicle Release. Int. J. Mol. Sci. 2020, 21, 9278. https://doi.org/10.3390/ijms21239278.

  • 22.

    Gkountela, S.; Castro-Giner, F.; Szczerba, B.M.; et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell 2019, 176, 98–112.e14. https://doi.org/10.1016/j.cell.2018.11.046.

  • 23.

    Kwon HJ, Shin SH, Kim HH; et al. Advances in methylation analysis of liquid biopsy in early cancer detection of colorectal and lung cancer. Sci Rep. 2023, 13, 13502. https://doi.org/10.1038/s41598-023-40611-w.

  • 24.

    Parisi, C.; Mastoraki, S.; Markou, A.; et al. Development and validation of a multiplex methylation specific PCR-coupled liquid bead array for liquid biopsy analysis. Clin. Chim. Acta 2016, 461, 156–164. https://doi.org/10.1016/j.cca.2016.08.003.

  • 25.

    Luo, H.; Wei, W.; Ye, Z.; et al. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med. 2021, 27, 482–500. https://doi.org/10.1016/j.molmed.2020.12.011.

  • 26.

    Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genom. 2019, 13, 34. https://doi.org/10.1186/s40246-019-0220-8.

  • 27.

    Katsman, E.; Orlanski, S.; Martignano, F.; et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 2022, 23, 158. https://doi.org/10.1186/s13059-022-02710-1.

  • 28.

    Zhao, Y.; O’Keefe, C.M.; Herman, J.G.; et al. Abstract 6510: REM-DREAMing: Low-cost digital microfluidic analysis of DNA methylation heterogeneity for enhanced, liquid biopsy-based detection of early-stage lung cancer. Cancer Res. 2023, 83, 6510. https://doi.org/10.1158/1538-7445.AM2023-6510.

  • 29.

    Bittla, P.; Kaur, S.; Sojitra, V.; et al. Exploring Circulating Tumor DNA (CtDNA) and Its Role in Early Detection of Cancer: A Systematic Review. Cureus. 2023, 15. https://doi.org/10.7759/cureus.45784.

  • 30.

    Visal, T.H.; den Hollander, P.; Cristofanilli, M.; et al. Circulating tumour cells in the -omics era: How far are we from achieving the ‘singularity’? Br. J. Cancer 2022, 127, 173–184. https://doi.org/10.1038/s41416-022-01768-9.

  • 31.

    Undvall Anand, E.; Magnusson, C.; Lenshof, A.; et al. Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood. Anal Chem. 2021, 93, 17076–17085. https://doi.org/10.1021/acs.analchem.1c04050.

  • 32.

    Wang, S.; Zhang, K.; Tan, S.; et al. Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol. Cancer 2021, 20, 13. https://doi.org/10.1186/s12943-020-01298-z.

  • 33.

    Masterson, A.N.; Liyanage, T.; Berman, C.; et al. A novel liquid biopsy-based approach for highly specific cancer diagnostics: Mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses. Analyst 2020, 145, 4173–4180. https://doi.org/10.1039/D0AN00538J.

  • 34.

    Masterson, A.N.; Liyanage, T.; Kaimakliotis, H.; et al. Bottom-Up Fabrication of Plasmonic Nanoantenna-Based High-throughput Multiplexing Biosensors for Ultrasensitive Detection of microRNAs Directly from Cancer Patients’ Plasma. Anal. Chem. 2020, 92, 9295–9304. https://doi.org/10.1021/acs.analchem.0c01639.

  • 35.

    Iliescu, F.S.; Poenar, D.P.; Yu, F.; et al. Recent advances in microfluidic methods in cancer liquid biopsy. Biomicrofluidics 2019, 13, 041503. https://doi.org/10.1063/1.5087690.

  • 36.

    Horos, R.; Daniel-Moreno, A.; Bieg-Salazar, C.; et al. B-375 Mer-idpcr: A Method for Sequence-specific Measurement of Small RNA Expression and Methylation in Liquid Biopsies. Clin. Chem. 2023, 69, hvad097.684. https://doi.org/10.1093/clinchem/hvad097.684.

  • 37.

    Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; et al. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Res. Int. 2018, 2018, 8545347. https://doi.org/10.1155/2018/8545347.

  • 38.

    Casadei, L.; Sarchet, P.; de Faria, F.C.C.; et al. In situ hybridization to detect DNA amplification in extracellular vesicles. J. Extracell. Vesicles 2022, 11, e12251. https://doi.org/10.1002/jev2.12251.

  • 39.

    Talebjedi, B.; Tasnim, N.; Hoorfar, M.; et al. Exploiting Microfluidics for Extracellular Vesicle Isolation and Characterization: Potential Use for Standardized Embryo Quality Assessment. Front. Vet. Sci. 2021, 7, 620809. https://doi.org/10.3389/fvets.2020.620809.

  • 40.

    Oesterreicher, J.; Pultar, M.; Schneider, J.; et al. Fluorescence-Based Nanoparticle Tracking Analysis and Flow Cytometry for Characterization of Endothelial Extracellular Vesicle Release. Int. J. Mol. Sci. 2020, 21, 9278. https://doi.org/10.3390/ijms21239278.

  • 41.

    Singh, V. Next-generation leukemia diagnostics: Integrating LC-MS/MS proteomics with liquid biopsy platforms. J. Liq. Biopsy 2025, 9, 100324. https://doi.org/10.1016/j.jlb.2025.100324.

  • 42.

    Smit, E.R.; Muñoz Sandoval, D.; Kreft, I.C.; et al. Plasma proteomes of acute myeloid leukemia patients treated with transfusions reveal signatures of inflammation and hemostatic dysregulation. Transl. Med. Commun. 2024, 9, 27. https://doi.org/10.1186/s41231-024-00189-5.

Share this article:
How to Cite
Babel, S.; Chamberlain, R. S. Technological Advances and Methodologies in Liquid Biopsy: An Updated Review. Australian Journal of Oncology 2026, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.