2512002627
  • Open Access
  • Article

Effect of New Oncological Therapies on Glucose Metabolism

  • Marilda Mormando 1,   
  • Vittoria Strinati 2,   
  • Eleonora Ciocca 3,   
  • Marta Bianchini 1,   
  • Rosa Lauretta 1,   
  • Giulia Puliani 1,   
  • Marialuisa Appetecchia 1,*

Received: 26 Aug 2025 | Revised: 09 Nov 2025 | Accepted: 24 Dec 2025 | Published: 16 Jan 2026

Abstract

Targeted cancer therapies and immunotherapy significantly impact glucose metabolism. Tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib have demonstrated beneficial effects by improving glycemic control and preserving pancreatic β-cell function. However, glycemic outcomes vary among TKIs; for example, nilotinib has been associated with impaired glucose regulation, while multikinase inhibitors produce heterogeneous metabolic effects. In contrast, mTOR inhibitors (everolimus, temsirolimus) frequently induce hyperglycemia through complex disruptions of insulin signaling pathways and β-cell functionality. Immune checkpoint inhibitors (ICIs) enhance anti-tumor immune responses by blocking CTLA-4 and PD-1 pathways but can compromise immune tolerance, leading to immune-related adverse events (irAEs). Among these, ICI-induced diabetes mellitus (ICI-DM) is a rare yet severe autoimmune disorder characterized by rapid pancreatic β-cell destruction, often presenting as diabetic ketoacidosis. Unlike the predominantly insulin-resistant diabetes mellitus associated with TKIs and mTOR inhibitors, ICI-DM resembles insulin-dependent type 1 diabetes mellitus and necessitates urgent insulin therapy and vigilant glucose monitoring. Management strategies differ accordingly: TKIs and mTOR inhibitor-induced hyperglycemia are typically addressed with first-line oral agents such as metformin, while ICI-DM requires immediate initiation of insulin treatment. Early recognition and interdisciplinary collaboration with metabolic disorders specialists are critical to preventing severe metabolic complications and allowing continuation of oncologic therapies. Further investigation is warranted to elucidate the precise molecular mechanisms driving these glucose metabolism disturbances and to optimize therapeutic approaches in cancer patients receiving targeted treatments. 

References 

  • 1.

    Duan, W.; Shen, X.; Lei, J.; et al. Hyperglycemia, a neglected factor during cancer progression. Biomed. Res. Int. 2014, 2014, 461917. https://doi.org/10.1155/2014/461917.

  • 2.

    Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. https://doi.org/10.1186/s41073-019-0064-8.

  • 3.

    Ebrahimi, N.; Fardi, E.; Ghaderi, H.; et al. Receptor tyrosine kinase inhibitors in cancer. Cell. Mol. Life Sci. 2023, 80, 104. https://doi.org/10.1007/s00018-023-04729-4.

  • 4.

    Shyam Sunder, S.; Sharma, U.C.; Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management. Signal Transduct. Target. Ther. 2023, 8, 262. https://doi.org/10.1038/s41392-023-01469-6.

  • 5.

    Ono, K.; Suzushima, H.; Watanabe, Y.; et al. Rapid amelioration of hyperglycemia facilitated by dasatinib in a chronic myeloid leukemia patient with type 2 diabetes mellitus. Intern. Med. 2012, 51, 2763–2766. https://doi.org/10.2169/internalmedicine.51.8314.

  • 6.

    Breccia, M.; Muscaritoli, M.; Cannella, L.; et al. Fasting glucose improvement under dasatinib treatment in an accelerated phase chronic myeloid leukemia patient unresponsive to imatinib and nilotinib. Leuk. Res. 2008, 32, 1626–1628. https://doi.org/10.1016/j.leukres.2008.01.015.

  • 7.

    Huda, M.S.; Amiel, S.A.; Ross, P.; et al. Tyrosine kinase inhibitor sunitinib allows insulin independence in long-standing type 1 diabetes. Diabetes Care 2014, 37, e87–e88. https://doi.org/10.2337/dc13-2132.

  • 8.

    Templeton, A.; Brandle, M.; Cerny, T.; et al. Remission of diabetes while on sunitinib treatment for renal cell carcinoma. Ann. Oncol. 2008, 19, 824–825. https://doi.org/10.1093/annonc/mdn047.

  • 9.

    Agostino, N.M.; Chinchilli, V.M.; Lynch, C.J.; et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 2011, 17, 197–202. https://doi.org/10.1177/1078155210378913.

  • 10.

    Billemont, B.; Medioni, J.; Taillade, L.; et al. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 2008, 99, 1380–1382. https://doi.org/10.1038/sj.bjc.6604709.

  • 11.

    Hagerkvist, R.; Sandler, S.; Mokhtari, D.; et al. Amelioration of diabetes by imatinib mesylate (Gleevec): Role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J. 2007, 21, 618–628. https://doi.org/10.1096/fj.06-6910com.

  • 12.

    Karunakaran, U.; Park, S.J.; Sim, T.; et al. Non-receptor tyrosine kinase inhibitors enhances beta-cell survival by suppressing the PKCdelta signal transduction pathway in streptozotocin-induced beta-cell apoptosis. Cell. Signal. 2015, 27, 1066–1074. https://doi.org/10.1016/j.cellsig.2015.01.018.

  • 13.

    Patel, S.S.; Patel, S.; Parikh, P. Future treatment of Diabetes—Tyrosine Kinase inhibitors. J. Diabetes Metab. Disord. 2023, 22, 61–71. https://doi.org/10.1007/s40200-022-01164-3.

  • 14.

    Feng, Z.C.; Popell, A.; Li, J.; et al. c-Kit Receptor Signaling Regulates Islet Vasculature, beta-Cell Survival, and Function In Vivo. Diabetes 2015, 64, 3852–3866. https://doi.org/10.2337/db15-0054.

  • 15.

    Brooks, M. Erlotinib and gefitinib, small-molecule EGFR inhibitors. New uses for old drugs? Br. J. Diabetes Vasc. Dis. 2012, 12, 195–196. https://doi.org/10.1177/1474651412458460.

  • 16.

    Gitelman, S.E.; Bundy, B.N.; Ferrannini, E.; et al. Imatinib therapy for patients with recent-onset type 1 diabetes: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2021, 9, 502–514. https://doi.org/10.1016/S2213-8587(21)00139-X.

  • 17.

    Breccia, M.; Muscaritoli, M.; Gentilini, F.; et al. Impaired fasting glucose level as metabolic side effect of nilotinib in non-diabetic chronic myeloid leukemia patients resistant to imatinib. Leuk. Res. 2007, 31, 1770–1772. https://doi.org/10.1016/j.leukres.2007.01.024.

  • 18.

    Sequist, L.V.; Soria, J.C.; Goldman, J.W.; et al. Rociletinib in EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 1700–1709. https://doi.org/10.1056/NEJMoa1413654.

  • 19.

    Genentech, Inc. Alectinib (ALECENSA) Prescribing Information; Genentech, Inc.: San Francisco, CA, USA, 2015. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/208434s000lbl.pdf (accessed on 15 June 2016).

  • 20.

    Pfizer Labs. Axitinib (INLYTA) Prescribing Information; Pfizer Labs: New York, NY, USA, 2014. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/202324s002lbl.pdf (accessed on 15 June 2016).

  • 21.

    Novartis Pharmaceuticals Corp. Ceritinib (ZYKADIA) Prescribing Information; Novartis Pharmaceuticals Corp.: East Hanover, NJ, USA, 2015. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205755s003s004lbl.pdf (accessed on 15 June 2016).

  • 22.

    GlaxoSmithKline. Dabrafenib (TAFINLAR) Prescribing Information; GlaxoSmithKline: Research Triangle Park, NC, USA, 2015. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/202806s0 04lbl.pdf (accessed on 15 June 2016).

  • 23.

    GlaxoSmithKline. Trametinib (MEKINIST) Prescribing Information; GlaxoSmithKline: Research Triangle Park, NC, USA, 2015. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/204114s004lbl.pdf (accessed on 15 June 2016).

  • 24.

    Acitelli, E.; Verrienti, A.; Sponziello, M.; et al. Effects of lenvatinib on glucose, cholesterol, triglycerides and estimated cardiovascular risk in patients with advanced thyroid cancer. Endocrine 2025, 87, 619–626. https://doi.org/10.1007/s12020-024-04003-y.

  • 25.

    Acitelli, E.; Maiorca, C.; Grani, G.; et al. Metabolic adverse events of multitarget kinase inhibitors: A systematic review. Endocrine 2023, 81, 16–29. https://doi.org/10.1007/s12020-023-03362-2.

  • 26.

    Savvides, P.; Nagaiah, G.; Lavertu, P.; et al. Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid. Thyroid 2013, 23, 600–604. https://doi.org/10.1089/thy.2012.0103.

  • 27.

    Den, R.B.; Kamrava, M.; Sheng, Z.; et al. A phase I study of the combination of sorafenib with temozolomide and radiation therapy for the treatment of primary and recurrent high-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 321–328. https://doi.org/10.1016/j.ijrobp.2012.04.017.

  • 28.

    Ma, H.; Zhang, T.; Shen, H.; et al. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br. J. Clin. Pharmacol. 2014, 77, 917–928. https://doi.org/10.1111/bcp.12228.

  • 29.

    Lee, Y.; Jung, H.S.; Choi, H.J.; et al. Life-threatening hypoglycemia induced by a tyrosine kinase inhibitor in a patient with neuroendocrine tumor: A case report. Diabetes Res. Clin. Pract. 2011, 93, e68–e70. https://doi.org/10.1016/j.diabres.2011.04.011.

  • 30.

    Fountas, A.; Tigas, S.; Giotaki, Z.; et al. Severe resistant hypoglycemia in a patient with a pancreatic neuroendocrine tumor on sunitinib treatment. Hormones 2015, 14, 438–441. https://doi.org/10.14310/horm.2002.1560.

  • 31.

    Motzer, R.J.; Hutson, T.E.; Tomczak, P.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124. https://doi.org/10.1056/NEJMoa065044.

  • 32.

    Breccia, M.; Muscaritoli, M.; Alimena, G. Reduction of glycosylated hemoglobin with stable insulin levels in a diabetic patient with chronic myeloid leukemia responsive to imatinib. Haematologica 2005, 90, ECR21.

  • 33.

    Breccia, M.; Muscaritoli, M.; Aversa, Z.; et al. Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J. Clin. Oncol. 2004, 22, 4653–4655. https://doi.org/10.1200/JCO.2004.04.217.

  • 34.

    Veneri, D.; Franchini, M.; Bonora, E. Imatinib and regression of type 2 diabetes. N. Engl. J. Med. 2005, 352, 1049–1050. https://doi.org/10.1056/NEJM200503103521023.

  • 35.

    Tyrrell, H.E.; Pwint, T. Sunitinib and improved diabetes control. BMJ Case Rep. 2014, 2014, bcr2014207521. https://doi.org/10.1136/bcr-2014-207521.

  • 36.

    Franklin, M.; Burns, L.; Perez, S.; et al. Incidence of type 2 diabetes mellitus and hyperlipidemia in patients prescribed dasatinib or nilotinib as first- or second-line therapy for chronic myelogenous leukemia in the US. Curr. Med. Res. Opin. 2018, 34, 353–360. https://doi.org/10.1080/03007995.2017.1399870.

  • 37.

    Villadolid, J.; Ersek, J.L.; Fong, M.K.; et al. Management of hyperglycemia from epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) targeting T790M-mediated resistance. Transl. Lung Cancer Res. 2015, 4, 576–583. https://doi.org/10.3978/j.issn.2218-6751.2015.10.01.

  • 38.

    Peng, M.; Huang, Y.; Tao, T.; et al. Metformin and gefitinib cooperate to inhibit bladder cancer growth via both AMPK and EGFR pathways joining at Akt and Erk. Sci. Rep. 2016, 6, 28611. https://doi.org/10.1038/srep28611.

  • 39.

    Motzer, R.J.; Escudier, B.; Oudard, S.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008, 372, 449–456. https://doi.org/10.1016/S0140-6736(08)61039-9.

  • 40.

    Yao, J.C.; Shah, M.H.; Ito, T.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. https://doi.org/10.1056/NEJMoa1009290.

  • 41.

    Baselga, J.; Campone, M.; Piccart, M.; et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 2012, 366, 520–529. https://doi.org/10.1056/NEJMoa1109653.

  • 42.

    Franz, D.N.; Belousova, E.; Sparagana, S.; et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): A multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013, 381, 125–132. https://doi.org/10.1016/S0140-6736(12)61134-9.

  • 43.

    Hudes, G.; Carducci, M.; Tomczak, P.; et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 2271–2281. https://doi.org/10.1056/NEJMoa066838.

  • 44.

    Hess, G.; Herbrecht, R.; Romaguera, J.; et al. Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J. Clin. Oncol. 2009, 27, 3822–3829. https://doi.org/10.1200/JCO.2008.20.7977.

  • 45.

    Verges, B.; Walter, T.; Cariou, B. Endocrine side effects of anti-cancer drugs: Effects of anti-cancer targeted therapies on lipid and glucose metabolism. Eur. J. Endocrinol. 2014, 170, R43–R55. https://doi.org/10.1530/EJE-13-0586.

  • 46.

    Um, S.H.; Frigerio, F.; Watanabe, M.; et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004, 431, 200–205. https://doi.org/10.1038/nature02866.

  • 47.

    Rachdi, L.; Balcazar, N.; Elghazi, L.; et al. Differential effects of p27 in regulation of beta-cell mass during development, neonatal period, and adult life. Diabetes 2006, 55, 3520–3528. https://doi.org/10.2337/db06-0861.

  • 48.

    Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. https://doi.org/10.1016/j.cell.2012.03.017.

  • 49.

    Kamp, K.; Gumz, B.; Feelders, R.A.; et al. Safety and efficacy of everolimus in gastrointestinal and pancreatic neuroendocrine tumors after (177)Lu-octreotate. Endocr. Relat. Cancer 2013, 20, 825–831. https://doi.org/10.1530/ERC-13-0254.

  • 50.

    Amato, R.J.; Jac, J.; Giessinger, S.; et al. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer 2009, 115, 2438–2446. https://doi.org/10.1002/cncr.24280.

  • 51.

    Milowsky, M.I.; Iyer, G.; Regazzi, A.M.; et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int. 2013, 112, 462–470. https://doi.org/10.1111/j.1464-410X.2012.11720.x.

  • 52.

    Yoon, D.H.; Ryu, M.H.; Park, Y.S.; et al. Phase II study of everolimus with biomarker exploration in patients with advanced gastric cancer refractory to chemotherapy including fluoropyrimidine and platinum. Br. J. Cancer 2012, 106, 1039–1044. https://doi.org/10.1038/bjc.2012.47.

  • 53.

    Yoo, C.; Lee, J.; Rha, S.Y.; et al. Multicenter phase II study of everolimus in patients with metastatic or recurrent bone and soft-tissue sarcomas after failure of anthracycline and ifosfamide. Investig. New Drugs 2013, 31, 1602–1608. https://doi.org/10.1007/s10637-013-0028-7.

  • 54.

    Sivendran, S.; Agarwal, N.; Gartrell, B.; et al. Metabolic complications with the use of mTOR inhibitors for cancer therapy. Cancer Treat. Rev. 2014, 40, 190–196. https://doi.org/10.1016/j.ctrv.2013.04.005.

  • 55.

    Xu, K.Y.; Shameem, R.; Wu, S. Risk of hyperglycemia attributable to everolimus in cancer patients: A meta-analysis. Acta Oncol. 2016, 55, 1196–1203. https://doi.org/10.3109/0284186X.2016.1168939.

  • 56.

    Lombard-Bohas, C.; Cariou, B.; Verges, B.; et al. Management of metabolic disorders induced by everolimus in patients with differentiated neuroendocrine tumors: Expert proposals. Bull. Cancer 2014, 101, 175–183. https://doi.org/10.1684/bdc.2014.1887.

  • 57.

    Spanjaard, P.; Petit, J.M.; Schmitt, A.; et al. Screening and management of metabolic complications of mTOR inhibitors in real-life settings. Ann. Endocrinol. 2024, 85, 263–268. https://doi.org/10.1016/j.ando.2023.11.003.

  • 58.

    Pusceddu, S.; Vernieri, C.; Di Maio, M.; et al. Metformin Use Is Associated With Longer Progression-Free Survival of Patients with Diabetes and Pancreatic Neuroendocrine Tumors Receiving Everolimus and/or Somatostatin Analogues. Gastroenterology 2018, 155, 479–489. https://doi.org/10.1053/j.gastro.2018.04.010.

  • 59.

    Hue-Fontaine, L.; Lemelin, A.; Forestier, J.; et al. Metformin and everolimus in neuroendocrine tumours: A synergic effect? Clin. Res. Hepatol. Gastroenterol. 2020, 44, 954–960. https://doi.org/10.1016/j.clinre.2020.02.011.

  • 60.

    Bono, P.; Oudard, S.; Bodrogi, I.; et al. Outcomes in Patients With Metastatic Renal Cell Carcinoma Who Develop Everolimus-Related Hyperglycemia and Hypercholesterolemia: Combined Subgroup Analyses of the RECORD-1 and REACT Trials. Clin. Genitourin. Cancer 2016, 14, 406–414. https://doi.org/10.1016/j.clgc.2016.04.011.

  • 61.

    Rui, R.; Zhou, L.; He, S. Cancer immunotherapies: Advances and bottlenecks. Front. Immunol. 2023, 14, 1212476. https://doi.org/10.3389/fimmu.2023.1212476.

  • 62.

    Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. https://doi.org/10.1038/nrc3239.

  • 63.

    Littman, D.R. Releasing the Brakes on Cancer Immunotherapy. Cell 2015, 162, 1186–1190. https://doi.org/10.1016/j.cell.2015.08.038.

  • 64.

    Naidoo, J.; Page, D.B.; Li, B.T.; et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 2015, 26, 2375–2391. https://doi.org/10.1093/annonc/mdv383.

  • 65.

    Wright, J.J.; Powers, A.C.; Johnson, D.B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 2021, 17, 389–399. https://doi.org/10.1038/s41574-021-00484-3.

  • 66.

    Sanlorenzo, M.; Vujic, I.; Daud, A.; et al. Pembrolizumab Cutaneous Adverse Events and Their Association With Disease Progression. JAMA Dermatol. 2015, 151, 1206–1212. https://doi.org/10.1001/jamadermatol.2015.1916.

  • 67.

    Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; et al. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 173–182. https://doi.org/10.1001/jamaoncol.2017.3064.

  • 68.

    Marsiglio, J.; McPherson, J.P.; Kovacsovics-Bankowski, M.; et al. A single center case series of immune checkpoint inhibitor-induced type 1 diabetes mellitus, patterns of disease onset and long-term clinical outcome. Front. Immunol. 2023, 14, 1229823. https://doi.org/10.3389/fimmu.2023.1229823.

  • 69.

    Kotwal, A.; Haddox, C.; Block, M.; et al. Immune checkpoint inhibitors: An emerging cause of insulin-dependent diabetes. BMJ Open Diabetes Res. Care 2019, 7, e000591. https://doi.org/10.1136/bmjdrc-2018-000591.

  • 70.

    Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; et al. Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 2018, 67, 1471–1480. https://doi.org/10.2337/dbi18-0002.

  • 71.

    Zhou, L.; Yang, S.; Li, Y.; et al. A comprehensive review of immune checkpoint inhibitor-related diabetes mellitus: Incidence, clinical features, management, and prognosis. Front. Immunol. 2024, 15, 1448728. https://doi.org/10.3389/fimmu.2024.1448728.

  • 72.

    Gauci, M.L.; Laly, P.; Vidal-Trecan, T.; et al. Autoimmune diabetes induced by PD-1 inhibitor-retrospective analysis and pathogenesis: A case report and literature review. Cancer Immunol. Immunother. 2017, 66, 1399–1410. https://doi.org/10.1007/s00262-017-2033-8.

  • 73.

    Rajasalu, T.; Brosi, H.; Schuster, C.; et al. Deficiency in B7-H1 (PD-L1)/PD-1 coinhibition triggers pancreatic beta-cell destruction by insulin-specific, murine CD8 T-cells. Diabetes 2010, 59, 1966–1973. https://doi.org/10.2337/db09-1135.

  • 74.

    Guleria, I.; Gubbels Bupp, M.; Dada, S.; et al. Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clin. Immunol. 2007, 125, 16–25. https://doi.org/10.1016/j.clim.2007.05.013.

  • 75.

    Yoneda, S.; Imagawa, A.; Hosokawa, Y.; et al. T-Lymphocyte Infiltration to Islets in the Pancreas of a Patient Who Developed Type 1 Diabetes After Administration of Immune Checkpoint Inhibitors. Diabetes Care 2019, 42, e116–e118. https://doi.org/10.2337/dc18-2518.

  • 76.

    Cheema, A.; Makadia, B.; Karwadia, T.; et al. Autoimmune Diabetes Associated With Pembrolizumab: A Review of Published Case Reports. World J. Oncol. 2018, 9, 1–4. https://doi.org/10.14740/wjon1085w.

  • 77.

    de Filette, J.M.K.; Pen, J.J.; Decoster, L.; et al. Immune checkpoint inhibitors and type 1 diabetes mellitus: A case report and systematic review. Eur. J. Endocrinol. 2019, 181, 363–374. https://doi.org/10.1530/EJE-19-0291.

  • 78.

    Usui, Y.; Udagawa, H.; Matsumoto, S.; et al. Association of Serum Anti-GAD Antibody and HLA Haplotypes with Type 1 Diabetes Mellitus Triggered by Nivolumab in Patients with Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, e41–e43. https://doi.org/10.1016/j.jtho.2016.12.015.

  • 79.

    Hong, A.R.; Yoon, J.H.; Kim, H.K.; et al. Immune Checkpoint Inhibitor-Induced Diabetic Ketoacidosis: A Report of Four Cases and Literature Review. Front. Endocrinol. 2020, 11, 14. https://doi.org/10.3389/fendo.2020.00014.

  • 80.

    Akturk, H.K.; Kahramangil, D.; Sarwal, A.; et al. Immune checkpoint inhibitor-induced Type 1 diabetes: A systematic review and meta-analysis. Diabet Med. 2019, 36, 1075–1081. https://doi.org/10.1111/dme.14050.

  • 81.

    Delasos, L.; Bazewicz, C.; Sliwinska, A.; et al. New onset diabetes with ketoacidosis following nivolumab immunotherapy: A case report and review of literature. J. Oncol. Pharm. Pract. 2021, 27, 716–721. https://doi.org/10.1177/1078155220943949.

  • 82.

    Stathi, D.; Hussain, S.; Crawley, D.; et al. Presentation of new onset type 1 diabetes with diabetic ketoacidosis anhyperosmolar hyperglycaemia after a single dose of nivolumab and ipilimumab. Endocrinol. Diabetes Metab. Case Rep. 2023, 2023, 22-0389. https://doi.org/10.1530/EDM-22-0389.

  • 83.

    Tsang, V.H.M.; McGrath, R.T.; Clifton-Bligh, R.J.; et al. Checkpoint Inhibitor-Associated Autoimmune Diabetes Is Distinct From Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 5499–5506. https://doi.org/10.1210/jc.2019-00423.

  • 84.

    Jeun, R.; Iyer, P.C.; Best, C.; et al. Clinical outcomes of immune checkpoint inhibitor diabetes mellitus at a comprehensive cancer center. Immunotherapy 2023, 15, 417–428. https://doi.org/10.2217/imt-2021-0316.

  • 85.

    Lo Preiato, V.; Salvagni, S.; Ricci, C.; et al. Diabetes mellitus induced by immune checkpoint inhibitors: Type 1 diabetes variant or new clinical entity? Review of the literature. Rev. Endocr. Metab. Disord. 2021, 22, 337–349. https://doi.org/10.1007/s11154-020-09618-w.

  • 86.

    Gauci, M.L.; Boudou, P.; Baroudjian, B.; et al. Occurrence of type 1 and type 2 diabetes in patients treated with immunotherapy (anti-PD-1 and/or anti-CTLA-4) for metastatic melanoma: A retrospective study. Cancer Immunol. Immunother. 2018, 67, 1197–1208. https://doi.org/10.1007/s00262-018-2178-0.

  • 87.

    Haque, W.; Ahmed, S.R.; Zilbermint, M. Nivolumab-induced autoimmune diabetes mellitus and hypothyroidism in a patient with rectal neuroendocrine tumor. J. Community Hosp. Intern. Med. Perspect. 2020, 10, 338–339. https://doi.org/10.1080/20009666.2020.1771126.

  • 88.

    Hansen, E.; Sahasrabudhe, D.; Sievert, L. A case report of insulin-dependent diabetes as immune-related toxicity of pembrolizumab: Presentation, management and outcome. Cancer Immunol. Immunother. 2016, 65, 765–767. https://doi.org/10.1007/s00262-016-1835-4.

  • 89.

    Brahmer, J.R.; Abu-Sbeih, H.; Ascierto, P.A.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 2021, 9, e002435. https://doi.org/10.1136/jitc-2021-002435.

  • 90.

    Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. https://doi.org/10.1200/JCO.21.01440.

  • 91.

    Clotman, K.; Janssens, K.; Specenier, P.; et al. Programmed Cell Death-1 Inhibitor-Induced Type 1 Diabetes Mellitus. J Clin. Endocrinol. Metab. 2018, 103, 3144–3154. https://doi.org/10.1210/jc.2018-00728.

  • 92.

    Shen, M.; Chen, D.; Zhao, R.; et al. Real-world adherence to toxicity management guidelines for immune checkpoint inhibitor-induced diabetes mellitus. Front. Endocrinol. 2023, 14, 1213225. https://doi.org/10.3389/fendo.2023.1213225.

  • 93.

    Andre, F.; Ciruelos, E.; Rubovszky, G.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. https://doi.org/10.1056/NEJMoa1813904.

  • 94.

    Nicolich-Henkin, S.; Waters, L.; Bansal, N.; et al. Glycemic Derangements With Capivasertib-From Hyperglycemia to Diabetic Ketoacidosis: A Report of 3 Cases. JCEM Case Rep. 2025, 3, luaf198. https://doi.org/10.1210/jcemcr/luaf198.

  • 95.

    Rugo, H.S.; Oliveira, M.; Howell, S.J.; et al. Capivasertib and fulvestrant for patients with hormone receptor-positive advanced breast cancer: Characterization, time course, and management of frequent adverse events from the phase III CAPItello-291 study. ESMO Open 2024, 9, 103697. https://doi.org/10.1016/j.esmoop.2024.103697.

  • 96.

    Cheng, R.; Boparai, M.; Zhu, X.; et al. Increased Risk of Hyperglycemia in Advanced Urothelial Cancer Patients Treated with Enfortumab Vedotin: A Systematic Review and Meta-Analysis. Cancer Investig. 2025, 43, 293–304. https://doi.org/10.1080/07357907.2025.2502992.

Share this article:
How to Cite
Mormando, M.; Strinati, V.; Ciocca, E.; Bianchini, M.; Lauretta, R.; Puliani, G.; Appetecchia, M. Effect of New Oncological Therapies on Glucose Metabolism. Australian Journal of Oncology 2026, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.