- 1.
Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. Royal Soc. A 1927, 115, 700–721.
- 2.
Kendall, D.G. Deterministic and stochastic epidemics in closed populations. In Third Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1956; Volume 4, pp. 149–165.
- 3.
Babajanyan, S.G.; Cheong, K.H. Age-structured SIR model and resource growth dynamics: A COVID-19 study. Nonlinear Dyn. 2021, 104, 2853–2864.
- 4.
Turkyilmazoglu, M. Explicit formulae for the peak time of an epidemic from the SIR model. Phys. D-Nonlinear Phenom. 2021, 422, 132902.
- 5.
Telles, C.R.; Lopes, H.; Franco, D. Sars-Cov-2: SIR model limitations and predictive constraints. Symmetry 2021, 13, 676.
- 6.
Carvalho, A.M.; Goncalves, S. An analytical solution for the Kermack-McKendrick model. Phys. A 2021, 566, 125659.
- 7.
Priesemann, V.; Brinkmann, M.M.; Ciesek, S.; et al. Calling for pan-european commitment for rapid and sustained reduction in SARS-CoV-2 infections. Lancet 2021, 397, 92–93.
- 8.
Mungkasi, S. Variational iteration and successive approximation methods for a SIR epidemic model with constant vaccination strategy. Appl. Math. Model. 2021, 90, 1–10.
- 9.
Santos, I.F.F.d.; Almeida, G.M.A.; de Moura, F.A.B.F. Adaptive SIR model for propagation of SARS-CoV-2 in brazil. Phys. A 2021, 569, 125773.
- 10.
Ghaffar, A.; Alanazi, S.; Alruwaili, M.; et al. Multi-stage intelligent smart lockdown using SIR model to control COVID 19. Intell. Autom. Soft Comput. 2021, 28, 429–445.
- 11.
Law, K.B.; Peariasamy, K.M.; Gill, B.S.; et al. Tracking the early depleting transmission dynamics of COVID-19 with a time-varying SIR model. Sci. Rep. 2020, 10, 21721.
- 12.
Brugnano, L.; Iavernaro, F.; Zanzottera, P. A multiregional extension of the SIR model, with application to the COVID-19 spread in italy. Math. Methods Appl. Sci. 2021, 44, 4414–4427.
- 13.
Venkatasen, M.; Mathivanan, S.K.; Jayagopal, P.; et al. Forecasting of the SARS-CoV-2 epidemic in india using SIR model, flatten curve and herd immunity. J. Ambient. Intell. Humaniz. Comput. 2020, 2020, 1–9.
- 14.
Heng, K.; Althaus, C.L. The approximately universal shapes of epidemic curves in the susceptible-exposed-infectious-recovered (seir) model. Sci. Rep. 2020, 10, 19365.
- 15.
Chekroun, A.; Kuniya, T. Global threshold dynamics of aninfection age-structured SIR epidemic model with diffusion under the dirichlet boundary condition. J. Differ. Equ. 2020, 269, 117–148.
- 16.
Cadoni, M.; Gaeta, G. Size and timescale of epidemics in the SIR framework. Phys. D-Nonlinear Phenom. 2020, 411, 132626.
- 17.
Chen, Y.-C.; Lu, P.-E.; Chang, C.-S.; et al. A time-dependent SIR model for COVID-19 with undetectable infected persons. IEEE Trans. Netw. Sci. Eng. 2020, 7, 3279–3294.
- 18.
Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fract. 2020, 139, 110057.
- 19.
Karaji, P.T.; Nyamoradi, N. Analysis of a fractional SIR model with general incidence function. Appl. Math. Lett. 2020,108, 106499.
- 20.
McMahon, A.; Robb, N.C. Reinfection with SARS-CoV-2: Discrete SIR (susceptible, infected, recovered) modeling using empirical infection data. JMIR Public Health Surveill. 2020, 6, 279–287.
- 21.
Chen, X.; Li, J.; Xiao, C.; Yang, P. Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19. Fuzzy Optim. Decis. Mak. 2021, 20, 189–208.
- 22.
Ahmetolan, S.; Bilge, A.H.; Demirci, A.; et al. What can we estimate from fatality and infectious case data using the susceptible-infected-removed (sir) model? a case study of COVID-19. Front. Med. 2020, 7, 556366.
- 23.
Gopagoni, D.; Lakshmi, V.; P Susceptible, infectious and recovered (sir model) predictive model to understand the key factors of COVID-19 transmission. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 296–302.
- 24.
Sene, N. Sir epidemic model with mittag?leffler fractional derivative. Chaos Solitons Fract. 2020, 137, 109833.
- 25.
Mohamadou, Y.; Halidou, A.; Kapen, P.T. A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Appl. Intell. 2020, 50, 3913–3925.
- 26.
Barlow, N.S.; Weinstein, S.J. Accurate closed-form solution of the SIR epidemic model. Phys. D-Nonlinear Phenom. 2020, 408, 132540.
- 27.
Simon, M. Sir epidemics with stochastic infectious periods. Stoch. Process. Their Appl. 2020, 130, 4252–4274.
- 28.
Postnikov, E.B. Estimation of COVID-19 dynamics on a back-of-envelope? Does the simplest SIR model provide quantitative parameters and predictions? Chaos Solitons Fract. 2020, 135, 109841.
- 29.
Shah, S.T.A.; Mansoor, M.; Mirza, A.F.; et al. Predicting COVID-19 spread in pakistan using the SIR model. J. Pure Appl. Microbiol. 2020, 14, 1423–1430.
- 30.
Zhao, X.; He, X.; Feng, T.; et al. A stochastic switched sirs epidemic model with nonlinear incidence and vaccination: Stationary distribution and extinction. Int. J. Biomath. 2020, 13, 2050020.
- 31.
Richard, N.A.; Robert, D.; Valentin, D.; et al. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Med. Wkly. 2020, 150, w20224.
- 32.
Colombo, R.M.; Garavello, M. Optimizing vaccination strategies in an age structured SIR model. Math. Biosci. Eng. 2020, 17, 1074–1089.
- 33.
Samanta, S.; Sahoo, B.; Das, B. Dynamics of an epidemic system with prey herd behavior and alternative resource to predator. J. Phys. A 2019, 52, 425601.
- 34.
Koufi, A.E.; Adnani, J.; Bennar, A.; et al. Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate. Int. J. Differ. Equ. 2019, 2019, 9275051.
- 35.
Li, X.; Li, X.; Zhang, Q. Time to extinction and stationary distribution of a stochastic susceptible-infected-recovered-susceptible model with vaccination under. Math. Popul. Stud. 2020, 27, 259–274.
- 36.
Imron, C.; Hariyanto; Yunus, M.; et al. Stability and persistence analysis on the epidemic model multi-region multi-patches. Int. Conf.Math. : Pure Appl. Comput. 2019, 1218, 012035.
- 37.
Britton, T.; Pardoux, E.; Eds. Stochastic Epidemic Models with Inference; Springer: Berlin, Germany, 2019; Volume 2255.
- 38.
Zhang, Y.; Li, Y.; Zhang, Q.; et al. Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules. Phys. A 2018, 501, 178–187.
- 39.
Xu, C.; Li, X. The threshold of a stochastic delayed sirs epidemic model with temporary immunity and vaccination. Chaos Solitons Fract. 2018, 111, 227–234.
- 40.
Liu, Q.; Jiang, D.; Shi, N.; et al. Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by levy jumps. Phys. A 2018, 492, 2010–2018.
- 41.
Witbooi, P.J. Stability of a stochastic model of an SIR epidemic with vaccination. Acta Biotheor. 2017, 65, 151–165.
- 42.
Miller, J.C. Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes. Infect. Dis. Model. 2017, 2, 35–55.
- 43.
Jornet-Sanz, M.; Corberan-Vallet, A.; Santonja, F.J.; et al. A bayesian stochastic sirs model with a vaccination strategy for the analysis of respiratory syncytial virus. Sort-Stat. Oper. Res. Trans. 2017, 41, 159–175.
- 44.
- 45.
Schlickeiser, R.; Kroger, M. Determination of a key pandemic parameter of the sir-epidemic model from past COVID-19 mutant waves and its variation for the validity of the gaussian evolution. Physics 2023, 5, 205–214.
https://doi.org/10.3390/physics5010016.
- 46.
Schlickeiser, R.; Kroger, M. Analytical solution of the susceptible-infected-recovered/removed model for the not too late temporal evolution of epidemics for general time-dependent recovery and infection rates. Covid 2023, 3, 1781–1796.
- 47.
Kroger, M.; Schlickeiser, R. Verification of the accuracy of the SIR model in forecasting based on the improved SIR model with a constant ratio of recovery to infection rate by comparing with monitored second wave data. R. Soc. Open Sci. 2021, 8, 211379,
https://doi.org/10.10.1098/rsos.211379.
- 48.
Schlickeiser, R.; Kroger, M. Analytical solution of the SIR-model for the temporal evolution of epidemics. part B. semi-time case. J. Phys. A Math. Theor. 2021, 54, 175601.
- 49.
Guo, X.; Wang, J.L. A unified adsorption kinetic model inspired by epidemiological model: Based on adsorbates ”infect“ adsorbents. Langmuir 2024, 40, 15569–15579.
- 50.
Guo, X.; Wang, J.L. A novel monolayer adsorption kinetic model based on adsorbates ”infect” adsorbents inspired by epidemiological model. Water Res. 2024, 253, 121313.
- 51.
Cui, S.X.; Liu, F.Z.; Jardon-Kojakhmetov, H.; et al. Discrete-time layered-network epidemics model with time-varying transition rates and multiple resources. Automatica 2024, 159, 111303.
- 52.
Klemm, S.; Ravera, L. On sir-type epidemiological models and population heterogeneity effects. Phys. A 2023, 624, 128928.
- 53.
Melikechi, O.; Young, A.L.; Tang, T.; et al. Limits of epidemic prediction using SIR models. J. Math. Biol. 2022, 85, 36.
- 54.
Machado, G.; Baxter, G.J. Effect of initial infection size on a network susceptible-infected-recovered model. Phys. Rev. E 2022, 106, 014307.
- 55.
Yan, X.R. Research and practice analysis of higher vocational colleges facing the experience and dissemination of regional characteristic tea culture. Adv. Multimed. 2022, 2022, 2199788.
- 56.
Jayatilaka, R.; Patel, R.; Brar, M.; et al. A mathematical model of COVID-19 transmission. Mater. Today-Proc. 2022, 54, 101–112.
- 57.
Palomo-Briones, G.A.; Siller, M.; Grignard, A. An agent-based model of the dual causality between individual and collective behaviors in an epidemic. Comput. Biol. Med. 2022, 141, 104995.
- 58.
Roman, H.E.; Croccolo, F. Spreading of infections on network models: Percolation clusters and random trees. Mathematics 2021, 9, 3054.
- 59.
Kavitha, C.; Gowrisankar, A.; Banerjee, S. The second and third waves in india: when will the pandemic be culminated? Eur. Phys. J. Plus 2021, 136, 596.
- 60.
Crescenzo, A.D.; Gomez-Corral, A.; Taipe, D. A computational approach to extreme values and related hitting probabilities in level-dependent quasi-birth-death processes. Math. Comput. Simul. 2025, 228, 211–224.
- 61.
Yu, C.; He, J.M.; Ma, Q.T.; et al. Dynamic evolution model of internet financial public opinion. Information 2024, 15, 433.
- 62.
Athapaththu, D.V.; Ambagaspitiya, T.D.; Chamberlain, A.; et al. Physical chemistry lab for data analysis of COVID-19 spreading kinetics in different countries. J. Chem. Educ. 2024, 101, 2892–2898.
- 63.
Song, Z.L.; Zhang, Z.; Lyu, F.; et al. From individual motivation to geospatial epidemiology: A novel approach using fuzzy cognitive maps and agent-based modeling for large-scale. Sustainability 2024, 16, 5036.
- 64.
Li, G.J.; Chang, B.F.; Zhao, J.; et al. Vivian: virtual simulation and visual analysis of epidemic spread data. J. Vis. 2024, 27, 677–694.
- 65.
Agosto, A.; Cerchiello, P. A data-driven test approach to identify COVID-19 surge phases: An alert-warning tool. Statistics 2024, 58, 422–436.
- 66.
Yoon, I.; Ahn, C.; Ahn, S.; et al. Enhancing indoor building occupant safety in the built environment: Assessing the validity of social force modeling for simulating physical. Dev. Built Environ. 2024, 17, 100336.
- 67.
Yadav, S.K.; Khan, S.A.; Tiwari, M.; et al. Taking cues from machine learning, compartmental and time series models for SARS-CoV-2 omicron infection in indian provinces. Spat. Spatio-Temporal Epidemiol. 2024, 48, 100634.
- 68.
Finney, L.; Amundsen, D.E. Asymptotic analysis of periodic solutions of the seasonal SIR model. Phys. D-Nonlinear Phenom. 2024, 458, 133996.
- 69.
Rocha, J.L.; Carvalho, S.; Coimbra, B. Probabilistic procedures for SIR and SIS epidemic dynamics on erdos-r enyi contact networks. Appliedmath 2023, 3, 828–850.
- 70.
Ilic, B.; Salom, I.; Djordjevic, M.; et al. An analytical framework for understanding infection progression under social mitigation measures. Nonlinear Dyn. 2023, 111, 22033–22053.
- 71.
Atienza-Diez, I.; Seoane, L.F. Long- and short-term effects of cross-immunity in epidemic dynamics. Chaos Solitons Fract. 2023, 174, 113800.
- 72.
Prodanov, D. Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks. Nonlinear Dyn. 2023, 111, 15613–15631.
- 73.
Darvishi, H.; Darvishi, M.T. An analytical study on two high-order hybrid methods to solve systems of nonlinear equations. J. Math. 2023, 2023, 9917774.
- 74.
Karaji, P.T.; Nyamoradi, N.; Ahmad, B. Stability and bifurcations of an SIR model with a nonlinear incidence rate. Math. Methods Appl. Sci. 2023, 46, 10850–10866.
- 75.
Chakir, Y. Global approximate solution of SIR epidemic model with constant vaccination strategy. Chaos Solitons Fract. 2023, 169, 113323.
- 76.
Salimipour, A.; Mehraban, T.; Ghafour, H.S.; et al. Sir model for the spread of COVID-19: A case study. Oper. Res. Perspect. 2023, 10, 100265.
- 77.
Luangwilai, T.; Thammawichai, M. Optimal river flow management to reduce flood risks: A case study in northeastern thailand. River Res. Appl. 2023, 39, 255–265.
- 78.
Prodanov, D. Asymptotic analysis of the SIR model and the gompertz distribution. J. Comput. Appl. Math. 2023, 422, 114901.
- 79.
Qin, Y.P.; Wang, Z.; Zou, L. Analytical properties and solutions of a modified lindemann mechanism with three reaction rate constants. J. Math. Chem. 2023, 61, 389–401.
- 80.
Ishfaq, U.; Khan, H.U.; Iqbal, S. Identifying the influential nodes in complex social networks using centrality-based approach. J. King Saud Univ. -Comput. Inf. Sci. 2022, 34, 9376–9392.
- 81.
Gairat, A.; Shcherbakov, V. Discrete SIR model on a homogeneous tree and its continuous limit. J. Phys. A 2022, 55, 434004.
- 82.
Al-Obaidi, R.H.; Darvishi, M.T. Constructing a class of frozen jacobian multi-step iterative solvers for systems of nonlinear equations. Mathematics 2022, 10, 2952.
- 83.
Oz, Y. Analytical investigation of compartmental models and measure for reactions of governments. Eur. Phys. J. E 2022, 45, 68.
- 84.
de Souza, D.B.; Araujo, H.A.; Duarte, G.C.; et al. Fock-space approach to stochastic susceptible-infected-recovered models. Phys. Rev. E 2022, 106, 014136.
- 85.
Kozyreff, G. Asymptotic solutions of the SIR and SEIR models well above the epidemic threshold. Ima J. Appl. Math. 2022, 87, 521–536.
- 86.
S. Y. Tchoumi, H. Rwezaura, and J. M. Tchuenche. Dynamic of a two-strain COVID-19 model with vaccination. Results Phys. 2022, 39, 105777.
- 87.
Schwarzendahl, F.J.; Grauer, J.; Liebchen, B.; et al. Mutation induced infection waves in diseases like COVID-19. Sci. Rep. 2022, 12, 9641.
- 88.
Gulec, F.; Atakan, B.; Dressler, F. Mobile human ad hoc networks: A communication engineering viewpoint on interhuman airborne pathogen transmission. Nano Commun. Netw. 2022, 32–33, 100410.
- 89.
Turkyilmazoglu, M. A restricted epidemic SIR model with elementary solutions. Phys. A 2022, 600, 127570.
- 90.
Turkyilmazoglu, M. An extended epidemic model with vaccination: Weak-immune SIRV i. Phys. A 2022, 598, 127429.
- 91.
d’Andrea, V.; Gallotti, R.; Castaldo, N.; et al. Individual risk perception and empirical social structures shape the dynamics of infectious disease outbreaks. PLoS Comput. Biol. 2022, 18, e1009760.
- 92.
Jiang, J.Y.; Zhou, Y.C.; Chen, X.S.; et al. COVID-19 surveiller: toward a robust and effective pandemic surveillance system basedon social media mining. Philos. Trans. R. Soc. A-Math. Phys. 2022, 380, 20210125.
- 93.
Uc¸ar, D.; C¸ elik, E. Analysis of COVID 19 disease with SIR model and taylor matrix method. Aims Math. 2022, 7, 11188–11200.
- 94.
Berenbrink, P.; Cooper, C.; Gava, C.; et al. On early extinction and the effect of travelling in the SIR model. Uncertain. Artif. Intell. 2022, 180, 159–169.
- 95.
Hussain, S.; Madi, E.N.; Khan, H.; et al. Investigation of the stochastic modeling of COVID-19 with environmental noise from the analytical and numerical point of view. Mathematics 2021, 9, 3122.
- 96.
Rusu, A.C.; Emonet, R.; Farrahi, K. Modelling digital and manual contact tracing for COVID-19. are low uptakes and missed contacts deal-breakers? PLoS ONE 2021, 16, e0259969.
- 97.
Lee, K.; Parish, E.J. Parameterized neural ordinary differential equations: applications to computational physics problems. Proc. R. Soc. A-Math. Phys. Eng. 2021, 477, 20210162.
- 98.
Barwolff, G. A local and time resolution of the COVID-19 propagation-a two-dimensional approach for germany including diffusion phenomena to. Physics 2021, 3, 536–548.
- 99.
Kartono, A.; Karimah, S.V.; Wahyudi, S.T.; et al. Forecasting the long-term trends of coronavirus disease 2019 (COVID-19) epidemic using the susceptible-infectious-recovered (sir) model. Infect. Dis. Rep. 2021, 13, 668–684.
- 100.
Hynd, R.; Ikpe, D.; Pendleton, T. Two critical times for the SIR model. J. Math. Anal. Appl. 2022, 505, 125507.
- 101.
Zhou, Y.C.; Jiang, J.Y.; Chen, X.S.; et al. #stayhome or #marathon? social media enhanced pandemic surveillance on spatial-temporal dynamic graphs. Proc. Acm Int. Conf. Inf. 2021, 30, 2738–2748.
- 102.
Schuttler, J.; Schlickeiser, R.; Schlickeiser, F.; et al. COVID-19 predictions using a Gauss model, based on data from April 2. Physics 2020, 2, 197–202.
- 103.
Kroger, M.; Turkyilmazoglu, M.; Schlickeiser, R. Explicit formulae for the peak time of an epidemic from the SIR model. which approximant to use? Phys. D 2021, 425, 132981.
- 104.
Lambert, J.H. Observations variae in mathesin puram, acta helvitica. Phys. Math. Anatom. Botan Med. 1758, 3, 128–168.
- 105.
Kroger, M.; Schlickeiser, R. Analytical solution of the SIR-model for the temporal evolution of epidemics. part A: Time-independent reproduction factor. J. Phys. A Math. Theor. 2020, 53, 505601.
- 106.
Haas, F.; Kroger, M.; Schlickeiser, R. Multi-hamiltonian structure of the epidemics model accounting for vaccinations and a suitable test for the accuracy of its numerical solvers. J. Phys. A 2022, 55, 225206.
- 107.
Weisstein, E. The CRC Encyclopedia of Mathematics, 3rd ed.; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2009.
- 108.
Beyer, W.H. CRC Standard Mathematical Tables, 28th ed.; CRC Press: Boca Raton, FL, USA, 1987.
- 109.
Shampine, L.F.; Reichelt, M.W. The matlabode suite. SIAM J. Sci. Comput. 1997, 18, 1–22.
- 110.
Bender, C.; Ghosh, A.; Vakili, H.; et al. An effective drift-diffusion model for pandemic propagation and uncertainty prediction. Biophys. Rep. 2024, 4, 100182.
- 111.
Jang, G.H.; Kim, S.J.; Lee, M.J.; et al. Effectiveness of vaccination and quarantine policies to curb the spread of COVID-19. Phys. A 2024, 637, 129580.
- 112.
Gao, W.H.; Wang, Y.; Cao, J.D.; et al. Final epidemic size and critical times for susceptible-infectious-recovered models with a generalized contact rate. Chaos 2024, 34, 013152.
- 113.
Dobie, A.P.; Bayrakal, A.; Or, M.E.; et al. Dynamics of feline coronavirus and fip: A compartmental modeling approach. Vet. Med. Int. 2023, 2023, 2721907.
- 114.
Shirazian, M. A new acceleration of variational iteration method for initial value problems. Math. Comput. Simul. 2023, 214, 246–259.
- 115.
Turkyilmazoglu, M. A highly accurate peak time formula of epidemic outbreak from the SIR model. Chin. J. Phys. 2023, 84, 39–50.
- 116.
Alshammari, F.S. Analysis of SIRV i model with time dependent coefficients and the effect of vaccination on the transmission rate and COVID- 19 epidemic waves. Infect. Dis. Model. 2023, 8, 172–182.
- 117.
Dimou, A.; Maragakis, M.; Argyrakis, P. A network sirx model for the spreading of COVID-19. Phys. A 2022, 590, 126746.
- 118.
Wang, Q.B.; Wu, H. There exists the smartest movement rate to control the epidemic rather than city lockdown? Appl. Math. Model. 2022, 106, 696–714.
- 119.
Golgeli, M. The contagion dynamics of vaccine skepticism. Hacet. J. Math. Stat. 2022, 51, 1697–1709.
- 120.
Wang, S.F.; Ma, Z.H.; Li, X.H.; et al. A generalized delay-induced sirs epidemic model with relapse. Aims Math. 2022, 7, 6600–6618.
- 121.
Harko, T.; Lobo, F.S.N.; Mak, M.K. Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Appl. Math. Comput. 2014, 236, 184–194.