- 1.
Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242.
- 2.
Szekely, G.; Rizzo, M.; Bakirov, N. Measuring and testing independence by correlation of distances. Ann. Stat. 2007, 35, 2769–2794.
- 3.
Szekely, G.; Rizzo, M. Brownian distance covariance. Ann. Appl. Stat. 2009, 3, 1233–1303.
- 4.
Gretton, A.; Herbrich, R.; Smola, A.; et al. Kernel methods for measuring independence. J. Mach. Learn. Res. 2005, 6, 2075–2129.
- 5.
Gretton, A.; Gyorfi, L. Consistent nonparametric tests of independence. J. Mach. Learn. Res. 2010, 11, 1391–1423.
- 6.
Li, R.; Zhong, W.; Zhu, L. Feature screening via distance correlation learning. J. Am. Stat. Assoc. 2012, 107, 1129–1139.
- 7.
Zhong, W.; Zhu, L. An iterative approach to distance correlation-based sure independence screening. J. Stat. Comput. Simul. 2015, 85, 2331–2345.
- 8.
Shen, C.; Wang, S.; Badea, A.; et al. Discovering the signal subgraph: An iterative screening approach on graphs. Pattern Recognit. Lett. 2024, 184, 97–102.
- 9.
Zhang, Q. On the properties of distance covariance for categorical data: Robustness, sure screening, and approximate null distributions. Scand. J. Stat. 2025, 52, 777–804.
- 10.
Zhou, Z. Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Ser. Anal. 2012, 33, 438–457.
- 11.
Fokianos, K.; Pitsillou, M. Testing independence for multivariate time series via the auto-distance correlation matrix. Biometrika 2018, 105, 337–352.
- 12.
Shen, C.; Chung, J.; Mehta, R.; et al. Independence testing for temporal data. Trans. Mach. Learn. Res. 2024. Available online: https://openreview.net/forum?id=jv1aPQINc4 (accessed on 1 January 2025).
- 13.
Fukumizu, K.; Gretton, A.; Sun, X.; et al. Kernel measures of conditional dependence. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007.
- 14.
Szekely, G.; Rizzo, M. Partial distance correlation with methods for dissimilarities. Ann. Stat. 2014, 42, 2382–2412.
- 15.
Wang, X.; Pan, W.; Hu, W.; et al. Conditional Distance Correlation. J. Am. Stat. Assoc. 2015, 110, 1726–1734.
- 16.
Edelmann, D.; Goeman, J.Aregressionperspective on generalized distance covariance and the hilbert–Schmidt independence criterion. Stat. Sci. 2022, 37, 562–579.
- 17.
Panda, S.; Shen, C.; Perry, R.; et al. Universally consistent k-sample tests via dependence measures. Stat. Probab. Lett. 2025, 216, 110278.
- 18.
Szekely, G.; Rizzo, M. Hierarchical clustering via joint between-within distances: Extending ward’s minimum variance method. J. Classif. 2005, 22, 151–183.
- 19.
Rizzo, M.; Szekely, G. DISCO analysis: A nonparametric extension of analysis of variance. Ann. Appl. Stat. 2010, 4, 1034–1055.
- 20.
Lee, Y.; Shen, C.; Priebe, C.E.; Vogelstein, J.T. Network dependence testing via diffusion maps and distance-based correlations. Biometrika 2019, 106, 857–873.
- 21.
Shen, C.; Arroyo, J.; Xiong, J.; et al. Community correlations and testing independence between binary graphs. arXiv 2025, arXiv:1906.03661.
- 22.
Guo, D.; Wang, C.; Wang, B.; et al. Learning fair representations via distance correlation minimization. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 2139–2152.
- 23.
Zhen, X.; Meng, Z.; Chakraborty, R.; et al. On the versatile uses of partial distance correlation in deep learning. In Proceedings of the 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; pp. 327–346.
- 24.
Ramdas, A.; Reddi, S.J.; B. P’oczos; et al. On the decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.
- 25.
Zhu, C.; Yao, S.; Zhang, X.; et al. Distance-based and rkhs-based dependence metrics in high dimension. Ann. Stat. 2020, 48, 3366–3394.
- 26.
Zhu, L.; Xu, K.; Li, R.; et al. Projection correlation between two random vectors. Biometrika 2017, 104, 829–843.
- 27.
Huang, C.; Huo, X. A statistically and numerically efficient independence test based on random projections and distance covariance. Front. Appl. Math. Stat. 2022, 7, 779841.
- 28.
Sejdinovic, D.; Sriperumbudur, B.; Gretton, A.; et al. Equivalence of distance-based and rkhs-based statistics in hypothesis testing. Ann. Stat. 2013, 41, 2263–2291.
- 29.
Shen, C.; Vogelstein, J.T. The exact equivalence of distance and kernel methods in hypothesis testing. AStA Adv. Stat. Anal. 2021, 105, 385–403.
- 30.
Lyons, R. Distance covariance in metric spaces. Ann. Probab. 2013, 41, 3284–3305.
- 31.
Lyons, R. Errata to “distance covariance in metric spaces”. Ann. Probab. 2018, 46, 2400–2405.
- 32.
Good, P. Permutation, Parametric, and Bootstrap Tests of Hypotheses; Springer: New York, NY, USA, 2005.
- 33.
Huo, X.; Szekely, G. Fast computing for distance covariance. Technometrics 2016, 58, 435–447.
- 34.
Chaudhuri, A.; Hu, W. A fast algorithm for computing distance correlation. Comput. Stat. Data Anal. 2019, 135, 15–24.
- 35.
Shen, C.; Panda, S.; Vogelstein, J.T. The chi-square test of distance correlation. J. Comput. Graph. Stat. 2022, 31, 254–262.
- 36.
Zhang, Q.; Filippi, S.; Gretton, A.; et al. Large-scale kernel methods for independence testing. Stat. Comput. 2018, 28, 113–130.
- 37.
Szekely, G.; Rizzo, M. The distance correlation t-test of independence in high dimension. J. Multivar. Anal. 2013, 117, 193–213.
- 38.
Wang, Q.; Chaerkady, R.; Wu, J.; et al. Mutant proteins as cancer-specific biomarkers. Proc. Natl. Acad. Sci. USA 2011, 108, 2444–2449.
- 39.
Wang, Q.; Zhang, M.; Tomita, T.; et al. Selected reaction monitoring approach for validating peptide biomarkers. Proc. Natl. Acad. Sci. USA 2017, 114, 13519–13524.
- 40.
Vogelstein, J.T.; Bridgeford, E.W.; Wang, Q.; et al. Discovering and deciphering relationships across disparate data modalities. eLife 2019, 8, e41690.