- 1.
Kulanthaivel, P.; Selvakumar, S.; Soundara, B.; et al. Combined effect of nano-silica and randomly distributed fibers on the strength behavior of clay soil. Nanotechnol. Environ. Eng. 2022, 7, 23–34. https://doi.org/10.1007/s41204-021-00176-3.
- 2.
Kulanthaivel, P.; Selvakumar, S.; Soundara, B.; et al. Strength Enhancement of Clay Soil Stabilized with Ordinary Portland Cement, Sodium Silicate and Sodium Hydroxide. Int. J. Pavement Res. Technol. 2023, 16, 1297–1310. https://doi.org/10.1007/s42947-022-00197-4.
- 3.
Kulanthaivel, P.; Soundara, B.; Velmurugan, S.; et al. Experimental investigation on stabilization of clay soil using nano-materials and white cement. Mater. Today Proc. 2021, 45, 507–511. https://doi.org/10.1016/j.matpr.2020.02.107
- 4.
Selvakumar, S.; Kulanthaivel, P.; Soundara, B. Influence of nano-silica and sodium silicate on the strength characteristics of clay soil. Nanotechnol. Environ. Eng. 2021, 6, 46. https://doi.org/10.1007/s41204-021-00142-z.
- 5.
Kannan, G.; Sujatha, E.R. A review on the Choice of Nano-Silica as Soil Stabilizer. Silicon 2022, 14, 6477–6492. https://doi.org/10.1007/s12633-021-01455-z.
- 6.
Ali, H.F.H.; Mohammed, A.S. Innovative analysis and advanced modeling of UCS and CBR in fly ash-treated soils: Evaluating the impact of hydraulic index, chemical alteration, lime modulus, and geochemical indices. Model. Earth Syst. Environ. 2025, 11, 28. https://doi.org/10.1007/s40808-024-02230-w
- 7.
Farid Hama Ali, H.; Mohammed, A.S. New approaches to evaluate the impact of chemical oxides on the liquid limit, plasticity index, and unconfined compressive strength of clay soils. Geomech. Geoengin. 2025, 20, 635–660. https://doi.org/10.1080/17486025.2024.2433627
- 8.
Shao, W.; Yue, W.; Zhang, Y.; et al. The Application of Machine Learning Techniques in Geotechnical Engineering: A Review and Comparison. Mathematics 2023, 11, 3976. https://doi.org/10.3390/math11183976.
- 9.
Ngo, T.Q.; Nguyen, L.Q.; Tran, V.Q. Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. Int. J. Pavement Eng. 2023, 24, 2136374. https://doi.org/10.1080/10298436.2022.2136374
- 10.
Kumar, A.; Sinha, S.; Saurav, S. Random forest, CART, and MLR-based predictive model for unconfined compressive strength of cement reinforced clayey soil: A comparative analysis. Asian J. Civ. Eng. 2024, 25, 2307–2323. https://doi.org/10.1007/s42107-023-00909-6.
- 11.
Guan, Q.Z.; Yang, Z.X.; Guo, N.; et al. Finite element geotechnical analysis incorporating deep learning-based soil model. Comput. Geotech. 2023, 154, 105120. https://doi.org/10.1016/j.compgeo.2022.105120.
- 12.
Wang, Z.Z. Deep Learning for Geotechnical Reliability Analysis with Multiple Uncertainties. J. Geotech. Geoenviron. Eng. 2022, 148. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002771.
- 13.
Wang, Z.Z.; Goh, S.H.; Zhang, W. Reliability-based design in spatially variable soils using deep learning: An illustration using shallow foundation. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2023, 17, 423–437. https://doi.org/10.1080/17499518.2022.2083178.
- 14.
Zhang, N.; Zhou, A.; Jin, Y.-F.; et al. An enhanced deep learning method for accurate and robust modelling of soil stress–strain response. Acta Geotech. 2023, 18, 4405–4427. https://doi.org/10.1007/s11440-023-01813-8.
- 15.
Zhang, W.; Ghahari, F.; Arduino, P.; et al. A deep learning approach for rapid detection of soil liquefaction using time–frequency images. Soil Dyn. Earthq. Eng. 2023, 166, 107788. https://doi.org/10.1016/j.soildyn.2023.107788.
- 16.
Akbar Firoozi, A.; Asghar Firoozi, A. Application of Machine Learning in Geotechnical Engineering for Risk Assessment. In Machine Learning and Data Mining Annual Volume 2023; IntechOpen: London, UK, 2023. https://doi.org/10.5772/intechopen.113218.
- 17.
Chen, M.; Kang, X.; Ma, X. Deep Learning–Based Enhancement of Small Sample Liquefaction Data. Int. J. Geomech. 2023, 23. https://doi.org/10.1061/IJGNAI.GMENG-8381.
- 18.
Savvides, A.A.; Papadopoulos, L. A neural network approach for the reliability analysis on failure of shallow foundations on cohesive soils. Int. J. Geo-Eng. 2024, 15, 15. https://doi.org/10.1186/s40703-024-00217-1.
- 19.
O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458
- 20.
Li, K.; Pan, L.; Guo, X.; et al. Hybrid random aggregation model and Bayesian optimization-based convolutional neural network for estimating the concrete compressive strength. Comput.-Aided Civ. Infrastruct. Eng. 2024, 39, 559–574. https://doi.org/10.1111/mice.13096.
- 21.
Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. https://doi.org/10.1007/978-3-642-24797-2_4.
- 22.
Vivian, J.; Prataviera, E.; Gastaldello, N.; et al. A comparison between grey-box models and neural networks for indoor air temperature prediction in buildings. J. Build. Eng. 2024, 84, 108583. https://doi.org/10.1016/j.jobe.2024.108583.
- 23.
Medsker, L.; Jain, L.C. (Eds.). Recurrent Neural Networks Design and Applications; CRC Press: Boca Raton, FL, USA, 1999. https://doi.org/10.1201/9781003040620
- 24.
Shan, F.; He, X.; Armaghani, D.J.; et al. Effects of data smoothing and recurrent neural network (RNN) algorithms for real-time forecasting of tunnel boring machine (TBM) performance. J. Rock Mech. Geotech. Eng. 2024, 16, 1538–1551. https://doi.org/10.1016/j.jrmge.2023.06.015.
- 25.
Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. Appl. Sci. 2023, 13, 5521. https://doi.org/10.3390/app13095521.
- 26.
Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980
- 27.
Kulanthaivel, P., Soundara, B., Velmurugan, S., & Naveenraj, V. Experimental investigation on stabilization of clay soil using nano-materials and white cement. Mater. Today Proc. 2021, 45, 507–511. https://doi.org/10.1016/j.matpr.2020.02.107.
- 28.
Aksu, G.; Eskisar, T. The geomechanical properties of soils treated with nanosilica particles. J. Rock Mech. Geotech. Eng. 2023, 15, 954–969. https://doi.org/10.1016/j.jrmge.2022.06.013.
- 29.
Thapa, I.; Ghani, S. Estimation of California bearing ratio for hill highways using advanced hybrid artificial neural network algorithms. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 1119–1144. https://doi.org/10.1007/s41939-023-00269-3.
- 30.
Asteris, P.G.; Skentou, A.D.; Bardhan, A.; et al. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. 2021, 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449.
- 31.
Khatti, J.; Grover, K.S. Prediction of UCS of fine-grained soil based on machine learning part 1: Multivariable regression analysis, gaussian process regression, and gene expression programming. Multiscale Multidiscip. Model. Exp. Des. 2023, 6, 199–222. https://doi.org/10.1007/s41939-022-00137-6.