2507000879
  • Open Access
  • Article
AI-Enabled Sustainable Soil Stabilization for Resilient Urban Infrastructure: Advancing SDG 9 and SDG 12 through Hybrid Deep Learning and Environmental Assessment
  • Ishwor Thapa 1,   
  • Sufyan Ghani 1, 2, *

Received: 28 May 2025 | Revised: 16 Jun 2025 | Accepted: 19 Jun 2025 | Published: 30 Jun 2025

Abstract

Urban areas face increasing challenges in constructing resilient infrastructure on weak or unstable soils, especially amid the impacts of climate change and rapid urbanization. This study introduces an innovative AI-driven framework that integrates advanced hybrid deep learning architectures namely Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Transformer models for accurately predicting the Unconfined Compressive Strength (UCS) of Nano-silica (NS) stabilized soils. A key innovation of this research lies in the development of a novel CNN-Transformer hybrid model, which outperforms traditional and standalone AI models, achieving an R2 of 0.97 and RMSE of 0.22 reducing prediction error by over 49%. Robustness was further validated using a 10,000-iteration Monte Carlo simulation. In addition to predictive modeling, this study pioneers a comparative Life Cycle Assessment (LCA) between NS and cement-based stabilization, revealing that NS reduces CO₂ emissions by 55%, lowers energy consumption by 73%, and improves material efficiency. Furthermore, a user-friendly Graphical User Interface (GUI) tool has been developed, enabling real-time optimization of NS dosage for practical implementation in urban projects. This research not only contributes a high-performance predictive tool but also supports sustainable construction practices, aligning with SDG 9 (Industry, Innovation, and Infrastructure) and SDG 12 (Responsible Consumption and Production).

References 

  • 1.
    Kulanthaivel, P.; Selvakumar, S.; Soundara, B.; et al. Combined effect of nano-silica and randomly distributed fibers on the strength behavior of clay soil. Nanotechnol. Environ. Eng. 2022, 7, 23–34. https://doi.org/10.1007/s41204-021-00176-3.
  • 2.
    Kulanthaivel, P.; Selvakumar, S.; Soundara, B.; et al. Strength Enhancement of Clay Soil Stabilized with Ordinary Portland Cement, Sodium Silicate and Sodium Hydroxide. Int. J. Pavement Res. Technol. 2023, 16, 1297–1310. https://doi.org/10.1007/s42947-022-00197-4.
  • 3.
    Kulanthaivel, P.; Soundara, B.; Velmurugan, S.; et al. Experimental investigation on stabilization of clay soil using nano-materials and white cement. Mater. Today Proc. 2021, 45, 507–511. https://doi.org/10.1016/j.matpr.2020.02.107
  • 4.
    Selvakumar, S.; Kulanthaivel, P.; Soundara, B. Influence of nano-silica and sodium silicate on the strength characteristics of clay soil. Nanotechnol. Environ. Eng. 2021, 6, 46. https://doi.org/10.1007/s41204-021-00142-z.
  • 5.
    Kannan, G.; Sujatha, E.R. A review on the Choice of Nano-Silica as Soil Stabilizer. Silicon 2022, 14, 6477–6492. https://doi.org/10.1007/s12633-021-01455-z.
  • 6.
    Ali, H.F.H.; Mohammed, A.S. Innovative analysis and advanced modeling of UCS and CBR in fly ash-treated soils: Evaluating the impact of hydraulic index, chemical alteration, lime modulus, and geochemical indices. Model. Earth Syst. Environ. 2025, 11, 28. https://doi.org/10.1007/s40808-024-02230-w
  • 7.
    Farid Hama Ali, H.; Mohammed, A.S. New approaches to evaluate the impact of chemical oxides on the liquid limit, plasticity index, and unconfined compressive strength of clay soils. Geomech. Geoengin. 2025, 20, 635–660. https://doi.org/10.1080/17486025.2024.2433627
  • 8.
    Shao, W.; Yue, W.; Zhang, Y.; et al. The Application of Machine Learning Techniques in Geotechnical Engineering: A Review and Comparison. Mathematics 2023, 11, 3976. https://doi.org/10.3390/math11183976.
  • 9.
    Ngo, T.Q.; Nguyen, L.Q.; Tran, V.Q. Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. Int. J. Pavement Eng. 2023, 24, 2136374. https://doi.org/10.1080/10298436.2022.2136374
  • 10.
    Kumar, A.; Sinha, S.; Saurav, S. Random forest, CART, and MLR-based predictive model for unconfined compressive strength of cement reinforced clayey soil: A comparative analysis. Asian J. Civ. Eng. 2024, 25, 2307–2323. https://doi.org/10.1007/s42107-023-00909-6.
  • 11.
    Guan, Q.Z.; Yang, Z.X.; Guo, N.; et al. Finite element geotechnical analysis incorporating deep learning-based soil model. Comput. Geotech. 2023, 154, 105120. https://doi.org/10.1016/j.compgeo.2022.105120.
  • 12.
    Wang, Z.Z. Deep Learning for Geotechnical Reliability Analysis with Multiple Uncertainties. J. Geotech. Geoenviron. Eng. 2022, 148. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002771.
  • 13.
    Wang, Z.Z.; Goh, S.H.; Zhang, W. Reliability-based design in spatially variable soils using deep learning: An illustration using shallow foundation. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2023, 17, 423–437. https://doi.org/10.1080/17499518.2022.2083178.
  • 14.
    Zhang, N.; Zhou, A.; Jin, Y.-F.; et al. An enhanced deep learning method for accurate and robust modelling of soil stress–strain response. Acta Geotech. 2023, 18, 4405–4427. https://doi.org/10.1007/s11440-023-01813-8.
  • 15.
    Zhang, W.; Ghahari, F.; Arduino, P.; et al. A deep learning approach for rapid detection of soil liquefaction using time–frequency images. Soil Dyn. Earthq. Eng. 2023, 166, 107788. https://doi.org/10.1016/j.soildyn.2023.107788.
  • 16.
    Akbar Firoozi, A.; Asghar Firoozi, A. Application of Machine Learning in Geotechnical Engineering for Risk Assessment. In Machine Learning and Data Mining Annual Volume 2023; IntechOpen: London, UK, 2023. https://doi.org/10.5772/intechopen.113218.
  • 17.
    Chen, M.; Kang, X.; Ma, X. Deep Learning–Based Enhancement of Small Sample Liquefaction Data. Int. J. Geomech. 2023, 23. https://doi.org/10.1061/IJGNAI.GMENG-8381.
  • 18.
    Savvides, A.A.; Papadopoulos, L. A neural network approach for the reliability analysis on failure of shallow foundations on cohesive soils. Int. J. Geo-Eng. 2024, 15, 15. https://doi.org/10.1186/s40703-024-00217-1.
  • 19.
    O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458
  • 20.
    Li, K.; Pan, L.; Guo, X.; et al. Hybrid random aggregation model and Bayesian optimization-based convolutional neural network for estimating the concrete compressive strength. Comput.-Aided Civ. Infrastruct. Eng. 2024, 39, 559–574. https://doi.org/10.1111/mice.13096.
  • 21.
    Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. https://doi.org/10.1007/978-3-642-24797-2_4.
  • 22.
    Vivian, J.; Prataviera, E.; Gastaldello, N.; et al. A comparison between grey-box models and neural networks for indoor air temperature prediction in buildings. J. Build. Eng. 2024, 84, 108583. https://doi.org/10.1016/j.jobe.2024.108583.
  • 23.
    Medsker, L.; Jain, L.C. (Eds.). Recurrent Neural Networks Design and Applications; CRC Press: Boca Raton, FL, USA, 1999. https://doi.org/10.1201/9781003040620
  • 24.
    Shan, F.; He, X.; Armaghani, D.J.; et al. Effects of data smoothing and recurrent neural network (RNN) algorithms for real-time forecasting of tunnel boring machine (TBM) performance. J. Rock Mech. Geotech. Eng. 2024, 16, 1538–1551. https://doi.org/10.1016/j.jrmge.2023.06.015.
  • 25.
    Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. Appl. Sci. 2023, 13, 5521. https://doi.org/10.3390/app13095521.
  • 26.
    Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980
  • 27.
    Kulanthaivel, P., Soundara, B., Velmurugan, S., & Naveenraj, V. Experimental investigation on stabilization of clay soil using nano-materials and white cement. Mater. Today Proc. 2021, 45, 507–511. https://doi.org/10.1016/j.matpr.2020.02.107.
  • 28.
    Aksu, G.; Eskisar, T. The geomechanical properties of soils treated with nanosilica particles. J. Rock Mech. Geotech. Eng. 2023, 15, 954–969. https://doi.org/10.1016/j.jrmge.2022.06.013.
  • 29.
    Thapa, I.; Ghani, S. Estimation of California bearing ratio for hill highways using advanced hybrid artificial neural network algorithms. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 1119–1144. https://doi.org/10.1007/s41939-023-00269-3.
  • 30.
    Asteris, P.G.; Skentou, A.D.; Bardhan, A.; et al. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. 2021, 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449.
  • 31.
    Khatti, J.; Grover, K.S. Prediction of UCS of fine-grained soil based on machine learning part 1: Multivariable regression analysis, gaussian process regression, and gene expression programming. Multiscale Multidiscip. Model. Exp. Des. 2023, 6, 199–222. https://doi.org/10.1007/s41939-022-00137-6.
Share this article:
How to Cite
Thapa, I.; Ghani, S. AI-Enabled Sustainable Soil Stabilization for Resilient Urban Infrastructure: Advancing SDG 9 and SDG 12 through Hybrid Deep Learning and Environmental Assessment. Bulletin of Computational Intelligence 2025, 1 (1), 3–30. https://doi.org/10.53941/bci.2025.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.