- 1.
Coyle, H.M.; Sulaiman, I.H. Bearing capacity of foundation piles: State of the art. Highw. Res. Rec. 1970, 333, 87.
- 2.
Wrana, B. Pile load capacity–calculation methods. Stud. Geotech. Et Mech. 2015, 37, 83–93.
- 3.
Meyerhof, G.G. Some recent research on the bearing capacity of foundations. Can. Geotech. J. 1963, 1, 16–26. https://doi.org/10.1139/t63-003.
- 4.
Jeong, S.; Kim, D.; Park, J. Empirical bearing capacity formula for steel pipe prebored and precast piles based on field tests. Int. J. Geomech. 2021, 21, 04021165. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002112.
- 5.
Alielahi, H.; Adampira, M. Comparison between empirical and experimental ultimate bearing capacity of bored piles—A case study. Arab. J. Geosci. 2016, 9, 78. https://doi.org/10.1007/s12517-015-2211-y.
- 6.
Wassel, A.L.-B. Empirical formulas to predict the axial capacity of driven piles using in-situ dynamic load testing data. Int. J. Mach. Learn. Comput. 2019, 9, 776.
- 7.
Ribeiro, D.B.; Pereira, J.L.J.; Lorena, A.C. Optimizing Empirical Methods for Calculating the Bearing Capacity of Concrete Piles. In Encontro Nacional de Inteligência Artificial e Computacional (ENIAC); SBC: Belém, Brazil, 2024; pp. 132–143. https://doi.org/10.5753/eniac.2024.245084.
- 8.
Eslami, A.; Aflaki, E.; Hosseini, B. Evaluating CPT and CPTu based pile bearing capacity estimation methods using Urmiyeh Lake Causeway piling records. Sci. Iran. 2011, 18, 1009–1019. https://doi.org/10.1016/j.scient.2011.09.003.
- 9.
Mijena, E.H. A comparison of friction piles bearing capacity based on theoretical and empirical mathematical models. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2012.
- 10.
Luo, Z.; Dong, F. Statistical investigation of bearing capacity of pile foundation based on Bayesian reliability theory. Adv. Civ. Eng. 2019, 2019, 9858617. https://doi.org/10.1155/2019/9858617.
- 11.
Zhao, Z. A Reliable Prediction Method to Forecast Pile Bearing Capacity Using Classic NB Base Hybrid Schemes. J. Inst. Eng. (India) Ser. A 2025, 106, 31–44. https://doi.org/10.1007/s40030-024-00852-y.
- 12.
Umar, I.H.; Salga, M.S.; Lin, H.; et al. Performance characterisation of machine learning models for geotechnical axial pile load capacity estimation: An enhanced GPR-based approach. Geomech. Geoengin. 2025, 20, 846–887. https://doi.org/10.1080/17486025.2025.2468645.
- 13.
Suzuki, N.; Nagai, K. Updating pile bearing capacity estimation using multiple piling data and spatial correlation. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2025, 19, 1–17. https://doi.org/10.1080/17499518.2024.2449377.
- 14.
Sun, Z.-J.; Han, Y.-F.; Jiang, F.; et al. Prediction of ultimate bearing capacity of single pile in composite formation based on HGS-XGBoost algorithm. Appl. Geophys. 2025, 1–18. https://doi.org/10.1007/s11770-025-1203-2.
- 15.
Sun, Z.; Han, Y.; Jiang, F.; et al. Leveraging data-driven machine learning techniques to enhance bearing capacity estimation in prebored and precast piles. Expert Syst. Appl. 2025, 285, 128070. https://doi.org/10.1016/j.eswa.2025.128070.
- 16.
Onyelowe, K.C.; Hanandeh, S.; Kamchoom, V.; et al. Developing advanced datadriven framework to predict the bearing capacity of piles on rock. Sci. Rep. 2025, 15, 11051. https://doi.org/10.1038/s41598-025-96186-1.
- 17.
Nhat, L.V.; Anh, T.N.; Van, H.T.V. Ultimate bearing capacity of bored piles in clayey sand determined using artificial neural networks. Transp. Infrastruct. Geotechnol. 2025, 12, 132. https://doi.org/10.1007/s40515-025-00592-x.
- 18.
Khan, A.; Khan, M.; Khan, W.A.; et al. Predicting pile bearing capacity using gene expression programming with SHapley Additive exPlanation interpretation. Discov. Civ. Eng. 2025, 2, 58. https://doi.org/10.1007/s44290-025-00215-x.
- 19.
Ji, Y. Estimation of pile-bearing capacity of rocks via reliable hybridization techniques. Multiscale and Multidisciplinary Modeling. Exp. Des. 2025, 8, 103. https://doi.org/10.1007/s41939-024-00674-2.
- 20.
Hu, J.; Xia, C.; Wu, J.; et al. Estimating the pile-bearing capacity utilizing a reliable machine-learning approach. Multiscale Multidiscip. Model. Exp. Des. 2025, 8, 1–32. https://doi.org/10.1007/s41939-025-00761-y.
- 21.
Fattahi, H.; Ghaedi, H. Forecasting Pile Bearing Capacity Using an Innovative RES-Based Approach. Indian Geotech. J. 2025, 55, 1629–1642. https://doi.org/10.1007/s40098-024-01036-y.
- 22.
Eslami, A.; Rahimi, A.; Nobahar, M. Ultimate load bearing of helical piles prediction and evaluation using machine learning-based algorithms. Geomech. Geoengin. 2025, 20, 661–686. https://doi.org/10.1080/17486025.2024.2438077.
- 23.
Chen, B.; Hai, M.; Di, G.; et al. Enhanced Dung Beetle Optimizer-Optimized KELM for Pile Bearing Capacity Prediction. Build. 2025, 15, 2654. https://doi.org/10.3390/buildings15152654.
- 24.
Cai, L.; Zhu, D.; Xu, K. The implementation of a machine-learning-based model utilizing meta-heuristic algorithms for predicting pile bearing capacity. Indian Geotech. J. 2025, 55, 210–225. https://doi.org/10.1007/s40098-024-00933-6.
- 25.
Yousheng, D.; Keqin, Z.; Zhongju, F.; et al. Machine learning based prediction model for the pile bearing capacity of saline soils in cold regions. In Structures; Elsevier: Amsterdam, The Netherlands, 2024. https://doi.org/10.1016/j.istruc.2023.105735.
- 26.
Yaychi, B.M.; Esmaeili-Falak, M. Estimating axial bearing capacity of driven piles using tuned random forest frameworks. Geotech. Geol. Eng. 2024, 42, 7813–7834. https://doi.org/10.1007/s10706-024-02952-9.
- 27.
Yang, X. Prediction of pile-bearing capacity using Least Square Support Vector Regression: Individual and hybrid models development. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 2701–2715. https://doi.org/10.1007/s41939-023-00357-4.
- 28.
Xu, M.; Zhu, Z. Utilizing meta-heuristic algorithms for load-bearing capacity prediction in piles with support vector regression. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 5445–5459. https://doi.org/10.1007/s41939-024-00527-y.
- 29.
Tran, T.H.; Nguyen, B.P.; Tran, T.D. Machine learning applications in Pile load capacity prediction: Advanced analysis of pile driving forces and depths in urban Ho Chi Minh City construction sites. Indian Geotech. J. 2024, 55, 1795–1800. https://doi.org/10.1007/s40098-024-01055-9.
- 30.
Shen, Y. Optimized systems of multi-layer perceptron predictive model for estimating pile-bearing capacity. J. Eng. Appl. Sci. 2024, 71, 52. https://doi.org/10.1186/s44147-024-00386-x.
- 31.
Arbi, S.J.; Hassan, W.; Khalid, U.; et al. Optimized machine learning-based enhanced modeling of pile bearing capacity in layered soils using random and grid search techniques. Earth Sci. Inform. 2025, 18, 1–21. https://doi.org/10.1007/s12145-025-01784-2.
- 32.
Kumar, M.; Kumar, D.R.; Khatti, J.; et al. Prediction of bearing capacity of pile foundation using deep learning approaches. Front. Struct. Civ. Eng. 2024, 18, 870–886. https://doi.org/10.1007/s11709-024-1085-z.
- 33.
Khatti, J.; Khanmohammadi, M.; Fissha, Y. Prediction of time-dependent bearing capacity of concrete pile in cohesive soil using optimized relevance vector machine and long short-term memory models. Sci. Rep. 2024, 14, 32047. https://doi.org/10.1038/s41598-024-83784-8.
- 34.
Karakaş, S.; Taşkın, G.; Ülker, M.B.C. Re-evaluation of machine learning models for predicting ultimate bearing capacity of piles through SHAP and Joint Shapley methods. Neural Comput. Appl. 2024, 36, 697–715. https://doi.org/10.1007/s00521-023-09053-3.
- 35.
Gu, W.; Liao, J.; Cheng, S. Bearing capacity prediction of the concrete pile using tunned ANFIS system. J. Eng. Appl. Sci. 2024, 71, 39. https://doi.org/10.1186/s44147-024-00369-y.
- 36.
Gang, L. Improving the estimation of the pile bearing capacity via hybridization technique based on adaptive network based fuzzy inference. J. Ambient. Intell. Humaniz. Comput. 2024, 15, 4043–4060. https://doi.org/10.1007/s12652-024-04878-9.
- 37.
Amjad, M.; Ahmad, I.; Ahmad, M.; et al. Prediction of pile bearing capacity using XGBoost algorithm: Modeling and performance evaluation. Appl. Sci. 2022, 12, 2126. https://doi.org/10.3390/app12042126.
- 38.
Karaboga, D. An idea based on honey bee swarm for numerical optimization. Dep. Comput. Sci. 2005, 1–10.
- 39.
Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- 40.
Heidari, A.A.; Mirjalili, S.; Faris, H.; et al. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028.
- 41.
Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4. https://doi.org/10.1109/ICNN.1995.488968.
- 42.
Edelmann, D.; Móri, T.F.; Székely, G.J. On relationships between the Pearson and the distance correlation coefficients. Stat. Probab. Lett. 2021, 169, 108960. https://doi.org/10.1016/j.spl.2020.108960.
- 43.
Smith, G.N. Probability and statistics in civil engineering. In Collins Professional and Technical Books; Nichols Publishing Company: New York, NY, USA, 1986; p. 244.
- 44.
Hair, J.F.; Wolfinbarger, M.; Money, A.H.; et al. Essentials of Marketing Research, 3rd ed.; McGraw-Hill/Irwin: New York, NY, USA, 2013.
- 45.
Khatti, J.; Grover, K.S. Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models. J. Rock Mech. Geotech. Eng. 2023, 15, 3010–3038. https://doi.org/10.1016/j.jrmge.2022.12.034.
- 46.
Asteris, P.G.; Skentou, A.D.; Bardhan, A.; et al. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. 2021, 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449.
- 47.
Ahmad, M.; Hu, J.L.; Ahmad, F.; et al. Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Mater. 2021, 14, 1983. https://doi.org/10.3390/ma14081983.
- 48.
Liang, W.; Luo, S.; Zhao, G.; et al. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms. Math. 2020, 8, 765. https://doi.org/10.3390/math8050765.
- 49.
Pham, T.A.; Tran, V.Q.; Vu, H.L.T.; et al. Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity. PLoS ONE 2020, 15, e0243030. https://doi.org/10.1371/journal.pone.0243030.
- 50.
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1.
- 51.
Huang, J.; Asteris, P.G.; Manafi Khajeh Pasha, S.; et al. A new auto-tuning model for predicting the rock fragmentation: A cat swarm optimization algorithm. Eng. Comput. 2022, 38, 2209–2220. https://doi.org/10.1007/s00366-020-01207-4.
- 52.
Mohammed, A.; Kurda, R.; Armaghani, D.J.; et al. Prediction of compressive strength of concrete modified with fly ash: Applications of neuro-swarm and neuro-imperialism models. Adv. Concr. Constr. 2021, 11, 489–512. https://doi.org/10.12989/acc.2021.11.5.489.
- 53.
Mawlood, Y.; Salih, A.; Hummadi, R.; et al. Comparison of artificial neural network (ANN) and linear regression modeling with residual errors to predict the unconfined compressive strength and compression index for Erbil City soils, Kurdistan-Iraq. Arab. J. Geosci. 2021, 14, 485. https://doi.org/10.1007/s12517-021-06712-4.