- 1.
Asteris, P.G.; Drosopoulos, G.Α.; Cavaleri, L.; et al. Mapping and Revealing the Nature of Masonry Compressive Strength Using Computational Intelligence. Structures 2025, 78, 109189. https://doi.org/10.1016/j.istruc.2025.109189.
- 2.
Zhongbo, Y.; Hien, P.L. Pre-Trained Transformer Model as a Surrogate in Multiscale Computational Homogenization Framework for Elastoplastic Composite Materials Subjected to Generic Loading Paths. Comput. Methods Appl. Mech. Eng. 2024, 421, 116745. https://doi.org/10.1016/j.cma.2024.116745.
- 3.
Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045.
- 4.
Milićević, B.; Ivanović, M.; Stojanović, B.; et al. Optimization of Physics-Informed Neural Networks for Efficient Surrogate Modeling of Huxley’s Muscle Model in Multi-Scale Finite Element Simulations. In Proceedings of the 2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE), Dayton, OH, USA, 4 December 2023; pp. 457–461.
- 5.
Sukhnandan, J.; Drosopoulos, G.A. A Machine Learning Approach Used to Predict the Peak Displacement, Base Shear and Fundamental Frequency of Multi-Storey Steel Structures under Seismic Excitation. Structures 2025, 73, 108367. https://doi.org/10.1016/j.istruc.2025.108367.
- 6.
Noureldin, M.; Ali, A.; Sim, S.; et al. A Machine Learning Procedure for Seismic Qualitative Assessment and Design of Structures Considering Safety and Serviceability. J. Build. Eng. 2022, 50, 104190. https://doi.org/10.1016/j.jobe.2022.104190.
- 7.
Asteris, P.G.; Lourenço, P.B.; Hajihassani, M.; et al. Soft Computing-Based Models for the Prediction of Masonry Compressive Strength. Eng. Struct. 2021, 248, 113276. https://doi.org/10.1016/j.engstruct.2021.113276.
- 8.
Asteris, P.G.; Skentou, A.D.; Bardhan, A.; et al. Soft Computing Techniques for the Prediction of Concrete Compressive Strength Using Non-Destructive Tests. Constr. Build. Mater. 2021, 303, 124450. https://doi.org/10.1016/j.conbuildmat.2021.124450.
- 9.
Asteris, P.G.; Skentou, A.D.; Bardhan, A.; et al. Predicting Concrete Compressive Strength Using Hybrid Ensembling of Surrogate Machine Learning Models. Cem. Concr. Res. 2021, 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449.
- 10.
Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; et al. Application of Artificial Neural Networks for the Prediction of the Compressive Strength of Cement-Based Mortars. Comput. Concr. 2019, 24, 329–345. https://doi.org/10.12989/CAC.2019.24.4.329.
- 11.
Motsa, S.M.; Stavroulakis, G.Ε.; Drosopoulos, G.Α. A Data-Driven, Machine Learning Scheme Used to Predict the Structural Response of Masonry Arches. Eng. Struct. 2023, 296, 116912. https://doi.org/10.1016/j.engstruct.2023.116912.
- 12.
Fuhg, J.N.; Marino, M.; Bouklas, N. Local Approximate Gaussian Process Regression for Data-Driven Constitutive Models: Development and Comparison with Neural Networks. Comput. Methods Appl. Mech. Eng. 2022, 388, 114217. https://doi.org/10.1016/j.cma.2021.114217.
- 13.
Drosopoulos, G.A.; Stavroulakis, G.E. Nonlinear Mechanics for Composite Heterogeneous Structures; CRC Press: Boca Raton, FL, USA, 2022.
- 14.
Li, Z.; Kovachki, N.; Azizzadenesheli, K.; et al. Fourier Neural Operator for Parametric Partial Differential Equations. arXiv 2021, arXiv:2010.08895.
- 15.
Lu, L.; Jin, P.; Pang, G.; et al. Learning Nonlinear Operators via DeepONet Based on the Universal Approximation Theorem of Operators. Nat. Mach. Intell. 2021, 3, 218–229. https://doi.org/10.1038/s42256-021-00302-5.
- 16.
Lu, L.; Meng, X.; Mao, Z.; et al. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev. 2021, 63, 208–228. https://doi.org/10.1137/19m1274067.
- 17.
Yin, M.; Zhang, E.; Yu, Y.; et al. Interfacing Finite Elements with Deep Neural Operators for Fast Multiscale Modeling of Mechanics Problems. Comput. Methods Appl. Mech. Eng. 2022, 402, 115027. https://doi.org/10.1016/j.cma.2022.115027.
- 18.
He, J.; Kushwaha, S.; Park, J.; et al. Sequential Deep Operator Networks (S-DeepONet) for Predicting Full-Field Solutions under Time-Dependent Loads. Eng. Appl. Artif. Intell. 2024, 127, 107258. https://doi.org/10.1016/j.engappai.2023.107258.
- 19.
Goswami, S.; Yin, M.; Yu, Y.; et al. A Physics-Informed Variational DeepONet for Predicting Crack Path in Quasi-Brittle Materials. Comput. Methods Appl. Mech. Eng. 2022, 391, 114587. https://doi.org/10.1016/j.cma.2022.114587.
- 20.
He, J.; Koric, S.; Kushwaha, S.; et al. Novel DeepONet Architecture to Predict Stresses in Elastoplastic Structures with Variable Complex Geometries and Loads. Comput. Methods Appl. Mech. Eng. 2023, 415, 116277. https://doi.org/10.1016/j.cma.2023.116277.
- 21.
Ahmed, B.; Qiu, Y.; Abueidda, D.W.; et al. Physics-Informed Deep Operator Networks with Stiffness-Based Loss Functions for Structural Response Prediction. Eng. Appl. Artif. Intell. 2025, 144, 110097. https://doi.org/10.1016/j.engappai.2025.110097.
- 22.
Abueidda, D.W.; Pantidis, P.; Mobasher, M.E. DeepOKAN: Deep Operator Network Based on Kolmogorov Arnold Networks for Mechanics Problems. Comput. Methods Appl. Mech. Eng. 2025, 436, 117699. https://doi.org/10.1016/j.cma.2024.117699.
- 23.
Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; et al. Physics-Informed Machine Learning. Nat Rev Phys 2021, 3, 422–440. https://doi.org/10.1038/s42254-021-00314-5.
- 24.
Chen, T.; Chen, H. Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems. IEEE Trans. Neural Netw. 1995, 6, 911–917. https://doi.org/10.1109/72.392253.
- 25.
Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2, 359–366. https://doi.org/10.1016/0893-6080(89)90020-8.
- 26.
Zhu, M.; Feng, S.; Lin, Y.; et al. Fourier-DeepONet: Fourier-Enhanced Deep Operator Networks for Full Waveform Inversion with Improved Accuracy, Generalizability, and Robustness. Comput. Methods Appl. Mech. Eng. 2023, 416, 116300. https://doi.org/10.1016/j.cma.2023.116300.
- 27.
Spathopoulos, S.C.; Stavroulakis, G.E. Springback Prediction in Sheet Metal Forming, Based on Finite Element Analysis and Artificial Neural Network Approach. Appl. Mech. 2020, 1, 97–110. https://doi.org/10.3390/applmech1020007.