- 1.
Liu, J.; Ou, G.; Qiu, Q.; et al. Atmospheric Chloride Deposition in Field Concrete at Coastal Region. Constr. Build. Mater. 2018, 190, 1015–1022. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.094.
- 2.
Houska, C. Deicing Salt–Recognizing the Corrosion Threat. In International Molybdenum Association; TMR Consulting: Pittsburgh, PA, USA, 2007; pp. 1–10.
- 3.
Pontes, J.; Bogas, J.A.; Real, S.; et al. The Rapid Chloride Migration Test in Assessing the Chloride Penetration Resistance of Normal and Lightweight Concrete. Appl. Sci. 2021, 11, 7251. https://doi.org/10.3390/APP11167251.
- 4.
Elfmarkova, V.; Spiesz, P.; Brouwers, H.J.H. Determination of the Chloride Diffusion Coefficient in Blended Cement Mortars. Cem. Concr. 2015, 78, 190–199. https://doi.org/10.1016/J.CEMCONRES.2015.06.014.
- 5.
Life-365TM Service Life Prediction Model TM and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides. Available online: https://life-365.org/wp-content/uploads/2024/11/Life-365_v2.2.3_Users_Manual.pdf2020 (accessed on 24 September 2025).
- 6.
Lindvall, A. Duracrete-Probabilistic Performance Based Durability Design of Concrete Structures. Available online: http://fib.bme.hu/proceedings/lindvall.pdf (accessed on 24 September 2025).
- 7.
NT BUILD 492 Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. 1999. Available online: https://salmanco.com/wp-content/uploads/2018/10/NT-Build-492.pdf (accessed on 24 September 2025).
- 8.
Tang, L.; Sørensen, H.E. Precision of the Nordic Test Methods for Measuring the Chloride Diffusion/Migration Coefficients of Concrete. Mater. Struct. 2001, 34, 479–485. https://doi.org/10.1007/BF02486496/METRICS.
- 9.
Taffese, W.Z.; Espinosa-Leal, L. Prediction of Chloride Resistance Level of Concrete Using Machine Learning for Durability and Service Life Assessment of Building Structures. J. Build. Eng. 2022, 60, 105146. https://doi.org/10.1016/J.JOBE.2022.105146.
- 10.
Sari-Ahmed, B.; Benzaamia, A.; Ghrici, M.; et al. Strength Prediction of Fiber-Reinforced Clay Soils Stabilized with Lime Using XGBoost Machine Learning. Civ. Environ. Eng. Rep. 2024, 34, 157–176. https://doi.org/10.59440/CEER/190062.
- 11.
Benzaamia, A.; Ghrici, M.; Rebouh, R.; et al. Predicting the Compressive Strength of CFRP-Confined Concrete Using Deep Learning. Eng. Struct. 2024, 319, 118801. https://doi.org/10.1016/J.ENGSTRUCT.2024.118801.
- 12.
Benzaamia, A.; Ghrici, M.; Rebouh, R.; et al. Shear Strength Modeling for Reinforced Concrete Beams Strengthened with Externally Bonded Fiber-Reinforced Polymer Using Machine Learning. Structures 2025, 76, 108954. https://doi.org/10.1016/J.ISTRUC.2025.108954.
- 13.
Rebouh, R.; Benzaamia, A.; Ghrici, M. MLP Neural Networks for Compressive Strength Assessment of AFRP-Confined Concrete. South Fla. J. Dev. 2024, 5, e4765. https://doi.org/10.46932/sfjdv5n12-023.
- 14.
Jifei, C.; Lin, B.; Pingping, R.; et al. Prediction Model of Chloride Erosion Concrete Based on Artificial Intelligence Algorithm. Bull. Chin. Ceram. Soc. 2024, 43, 439.
- 15.
Nouri, Y.; Ghanizadeh, A.R.; Safi Jahanshahi, F.; et al. Data-Driven Prediction of Axial Compression Capacity of GFRP-Reinforced Concrete Column Using Soft Computing Methods. J. Build. Eng. 2025, 101, 111831. https://doi.org/10.1016/J.JOBE.2025.111831.
- 16.
Raeisi, A.; Sharbatdar, M.K.; Naderpour, H.; et al. Flexural Capacity Prediction of RC Beams Strengthened in Terms of NSM System Using Soft Computing. J. Soft Comput. Civ. Eng. 2024, 8, 1–26. https://doi.org/10.22115/scce.2024.429316.1761.
- 17.
Liu, K.H.; Zheng, J.K.; Pacheco-Torgal, F.; et al. Innovative Modeling Framework of Chloride Resistance of Recycled Aggregate Concrete Using Ensemble-Machine-Learning Methods. Constr. Build. Mater. 2022, 337, 127613. https://doi.org/10.1016/J.CONBUILDMAT.2022.127613.
- 18.
Fakharian, P.; Nouri, Y.; Ghanizadeh, A.R.; et al. Bond Strength Prediction of Externally Bonded Reinforcement on Groove Method (EBROG) Using MARS-POA. Compos. Struct. 2024, 349, 118532. https://doi.org/10.1016/J.COMPSTRUCT.2024.118532.
- 19.
Marks, M.; Glinicki, M.A.; Gibas, K. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning. Materials 2015, 8, 8714–8727. https://doi.org/10.3390/MA8125483.
- 20.
Marks, M.; Jóźwiak-NiedzWiedzka, D.; Glinicki, M.A. Automatic Categorization of Chloride Migration into Concrete Modified with CFBC Ash. Comput. Concr. 2012, 9, 375–387. https://doi.org/10.12989/CAC.2012.9.5.375.
- 21.
Hodhod, O.A.; Ahmed, H.I. Developing an Artificial Neural Network Model to Evaluate Chloride Diffusivity in High Performance Concrete. HBRC J. 2013, 9, 15–21.
- 22.
Yao, L.; Ren, L.; Gong, G. Evaluation of Chloride Diffusion in Concrete Using PSO-BP and BP Neural Network. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 687, p. 012037. https://doi.org/10.1088/1755-1315/687/1/012037.
- 23.
Delgado, J.; Silva FA, N.; Azevedo, A.C.; et al. Artificial Neural Networks to Assess the Useful Life of Reinforced Concrete Elements Deteriorated by Accelerated Chloride Tests. J. Build. Eng. 2020, 31, 101445. https://doi.org/10.1016/J.JOBE.2020.101445.
- 24.
Sari-Ahmed, B.; Ghrici, M.; Benzaamia, A.; et al. Assessment of Unconfined Compressive Strength of Stabilized Soil Using Artificial Intelligence Tools: A Scientometrics Review. Stud. Syst. Decis. Control. 2024, 547, 271–288. https://doi.org/10.1007/978-3-031-65976-8_15.
- 25.
Benzaamia, A.; Ghrici, M.; Rebouh, R. Machine Learning Approaches for Predicting Compressive and Shear Strength of EB FRP-Reinforced Concrete Elements: A Comprehensive Review. In New Advances in Soft Computing in Civil Engineering; Springer: Berlin, Germany, 2024; pp. 221–249. https://doi.org/10.1007/978-3-031-65976-8_12.
- 26.
Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. https://doi.org/10.1007/BF00116251.
- 27.
Breiman, L. Random Forests. Mach Learn 2001, 45, 5–32. https://doi.org/10.1023/A:1010933404324/METRICS.
- 28.
Prokhorenkova, L.; Gusev, G.; Vorobev, A.; et al. CatBoost: Unbiased Boosting with Categorical Features. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6638–6648.
- 29.
Akiba, T.; Sano, S.; Yanase, T.; et al. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. https://doi.org/10.1145/3292500.3330701.
- 30.
Rebouh, R.; Benzaamia, A.; Ghrici, M. Bayesian-Optimized Tree-Based Models for Predicting the Shear Strength of U-Shaped Externally Bonded FRP-Strengthened RC Beams. Asian J. Civ. Eng. 2025, 26, 1465–1478.
- 31.
Benzaamia, A.; Ghrici, M.; Rebouh, R.; et al. Predicting the Shear Strength of Rectangular RC Beams Strengthened with Externally-Bonded FRP Composites Using Constrained Monotonic Neural Networks. Eng. Struct. 2024, 313, 118192. https://doi.org/10.1016/J.ENGSTRUCT.2024.118192.
- 32.
Kechroud, F.; Benzaamia, A.; Ghrici, M. Optimized Regression-Based Machine Learning Models for Predicting Chloride Diffusion in Concrete. Asian J. Civ. Eng. 2025, 26, 2513–2526. https://doi.org/10.1007/S42107-025-01326-7/METRICS.
- 33.
Ali Aichouba, A.; Benzaamia, A.; Ezziane, M.; et al. TabNet-Based Prediction of Residual Compressive and Flexural Strengths in Hybrid Fiber-Reinforced Self-Compacting Concrete (HFR-SCC) Exposed to Elevated Temperatures. Asian J. Civ. Eng. 2025, 26, 3705–3724. https://doi.org/10.1007/S42107-025-01392-X/METRICS.