2510002031
  • Open Access
  • Article

Prediction and Surface Roughness Optimization in Die-Sinking EDM of AA 5083 Using RSM and Swarm Intelligence Algorithms

  • Nikolaos A. Fountas,   
  • Nikolaos M. Vaxevanidis *

Received: 14 Aug 2025 | Revised: 07 Oct 2025 | Accepted: 30 Oct 2025 | Published: 05 Jan 2026

Abstract

As a non-conventional thermal material removal process, electro-discharge machining (EDM) is preferred when it comes to complex features and with high-precision contours as well as for materials that cannot be processed via conventional material removal operations. Nevertheless, several phenomena may adversely affect surface integrity of EDMed components, thus; they should be considered and experimentally investigated to optimize electro-discharge machining process. This paper experimentally examines surface integrity as regards surface roughness average Ra when using AA 5083 as a workpiece material and copper as electrode. Experiments were designed and carried out according to Taguchi L9 orthogonal design, setting three different levels of the process control parameters namely discharge (peak) current, pulse-on time and pulse-off time. Three algorithms namely moth-flame algorithm, dragonfly algorithm and whale optimization algorithm were employed to minimize the response. All algorithms performed adequately; however obvious differences in convergence speed and optimal solution results were found. The lowest result for surface roughness was found equal to 4.410 μm by DA and WOA algorithms at 35th and 5th iterations respectively, whereas DA was converged to its lowest score equal to 4.736 μm after 35 iterations.

References 

  • 1.

    Ho, K.H.; Newman, S.T. State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2003, 43, 1287–1300.

  • 2.

    Papazoglou, E.L.; Karmiris-Obratański, P.; Karkalos, N.E.; et al. Theoretical and experimental analysis of plasma radius expansion model in EDM: A comprehensive study. Int. J. Adv. Manuf. Technol. 2023, 126, 2429–2444.

  • 3.

    Petropoulos, G.P.; Vaxevanidis, N.M.; Radovanovic, M.; et al. Morphological: Functional aspects of electro-discharge machined surface textures. Stroj. Vestn. 2009, 55, 95–103.

  • 4.

    Petropoulos, G.; Vaxevanidis, N.M.; Pandazaras, C. Modeling of surface finish in electro-discharge machining based upon statistical multi-parameter analysis. J. Mater. Process. Technol. 2004, 155, 1247–1251.

  • 5.

    Petropoulos, G.; Vaxevanidis, N.; Iakovou, A.; et al. Multi-parameter modeling of surface texture in EDMachining using the design of experiments methodology. Mater. Sci. Forum. 2006, 526, 157–162.

  • 6.

    Zhang, Y.; Bai, X.-L.; Xu, X.; et al. STEP-NC Based High-level Machining Simulations Integrated with CAD/CAPP/CAM. Int. J. Autom. Com. 2012, 9, 506–517. https://doi.org/10.1007/s11633-012-0674-9.

  • 7.

    De Silva, A.K.M.; McGeough, J.A. Computer applications in unconventional machining. J. Mater. Process. Technol. 2000, 107, 276–282.

  • 8.

    Vikas, R.A.K.; Kumar, K. Effect and Optimization of Machine Process Parameters on Material Removal Rate in EDM for EN41 Material Using Taguchi. Int. J. Mech. En. Computer Appl. 2013, 1, 35–39.

  • 9.

    Younis, M.A.; Abbas, M.S.; Gouda, M.A.; et al. Effect of electrode material on electrical discharge machining of tool steel surface. Ain Shams Eng. J. 2015, 6, 977–986. https://doi.org/10.1016/j.asej.2015.02.001.

  • 10.

    Raghuraman, S.; Thiruppathi, K.; Panneerselvam, T.; et al. Optimization of EDM parameters using taguchi method and grey relational analysis for mild steel IS 2026. Int. J. Innovative Res. Sci. Eng. Technol. 2013, 2, 3095–3104.

  • 11.

    Markopoulos, A.P.; Manolakos, D.E.; Vaxevanidis, N.M. Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J. Intell. Manuf. 2008, 19, 283–292.

  • 12.

    Markopoulos, A.P.; Papazoglou, E.L.; Svarnias, P.; et al. An experimental investigation of machining aluminum alloy Al5052 with EDM. Proc. Manuf. 2019, 41, 787–794.

  • 13.

    Markopoulos, A.P.; Papazoglou, E.L.; Karmiris-Obratański, P. Experimental study on the influence of machining conditions on the quality of electrical discharge machined surfaces of aluminum alloy Al5052. Machines 2020, 8, 12.

  • 14.

    Balanou, M.; Karmiris-Obratański, P.; Karkalos, N.E.; et al. On the Machining of Aluminum Alloy Series 7 with EDM. In International Scientific-Technical Conference Manufacturing; Springer International Publishing: Cham, Switzerland, 2022; pp. 149–160.

  • 15.

    Cavaleri, L.; Chatzarakis, G.E.; Di Trapani, F.; et al. Modeling of surface roughness in electro-discharge machining using artificial neural networks. Adv. Mater. Res. 2017, 6, 169–184.

  • 16.

    Mishra, S.S.; Mahapatra, K.; Mahapatra, K.K.; et al. Advancement in the EDM Process: A Critical Review. In Current Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering; Acharya, S.K., Mishra, D.P., Eds.; Springer: Singapore, 2021. https://doi.org/10.1007/978-981-33-4795-3_77.

  • 17.

    Asteris, P.G. Computational Intelligence: From Nature and Aristotle to Meta-Heuristic Algorithms. Bull. Comput. Intell. 2025, 1, 1–2. https://doi.org/10.53941/bci.2025.100001.

  • 18.

    Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Sys. 2015, 89, 228–249. https://doi.org/10.1016/j.knosys.2015.07.006.

  • 19.

    Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. https://doi.org/10.1007/s00521-015-1920-1.

  • 20.

    Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Soft. 2016, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008.

  • 21.

    Yang, X.-S.; Karamanoglu, M. Swarm Intelligence and Bio-Inspired Computation: An Overview. In Swarm Intelligence and Bio-Inspired Computation; Yang, X.-S., Cui, Z., Xiao, R., et al., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 3–23, ISBN 9780124051638. https://doi.org/10.1016/B978-0-12-405163-8.00001-6.

  • 22.

    Tran, V.T.; Le, M.H.; Vo, M.T.; et al. Optimization design for die-sinking EDM process parameters employing effective intelligent method. Cogent Eng. 2023, 10, 2264060. https://doi.org/10.1080/23311916.2023.2264060.

  • 23.

    Ranajit, M.; Das, M. Sustainable EDM production of micro-textured die-surfaces: Modeling and optimizing the process using machine learning techniques. Measurement 2025, 242, 115775. https://doi.org/10.1016/j.measurement.2024.115775.

  • 24.

    Alkayem, N.F.; Parida, B.; Pal, S. Optimization of friction stir welding process using NSGA-II and DEMO. Neural Comput. Appl. 2019, 31, 947–956. https://doi.org/10.1007/s00521-017-3059-8.

  • 25.

    Alkayem, N.F.; Parida, B.; Pal, S. Optimization of friction stir welding process parameters using soft computing techniques. Soft Comput. 2017, 21, 7083–7098. https://doi.org/10.1007/s00500-016-2251-6.

Share this article:
How to Cite
Fountas, N. A.; Vaxevanidis, N. M. Prediction and Surface Roughness Optimization in Die-Sinking EDM of AA 5083 Using RSM and Swarm Intelligence Algorithms. Bulletin of Computational Intelligence 2026, 2 (1), 1–12. https://doi.org/10.53941/bci.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.