2511002365
  • Open Access
  • Article

Predicting the Compressive Strength of Fly Ash Composite Foam Concrete Using Artificial Neural Networks and Soft Computing Techniques

  • Aidn Maqsud Muhammed 1,   
  • Mohamed Amin Idrees Omer  1,   
  • Rahand Shaho Haider 1,   
  • Namarq Tareq Abd 1,   
  • Ahmed Salih Mohammed 2,3,*

Received: 30 Oct 2025 | Revised: 09 Nov 2025 | Accepted: 21 Nov 2025 | Published: 20 Jan 2026

Abstract

This study develops soft-computing models to predict the compressive strength of Fly Ash Composite Foam Concrete (FFC), a lightweight, sustainable cementitious material. A database of 302 experimental records was compiled from previous studies, including wet density, cement content, fly ash content, sand content, water–binder ratio, foam content, and curing age. Five predictive models were evaluated, with the Artificial Neural Network (ANN) achieving the best performance, yielding an accuracy of 98% and the lowest prediction error. Sensitivity analysis identified wet density, cement content, and foam content as the most influential variables. The results demonstrate that soft computing approaches can significantly reduce experimental effort, lower costs, and support the sustainable design of FFC mix ratios for diverse applications.

References 

  • 1.

    Ahmad, S.A.; Bashir, M.F.; Rehman, S.K.U.; et al. Machine learning approach for predicting compressive strength in foam concrete under varying mix designs and curing periods. Smart Constr. Sustain. Cities 2023, 1, 16. https://doi.org/10.1007/s44268-023-00021-3.

  • 2.

    Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2019, 11, 1675–1710. https://doi.org/10.5194/essd-11-1675-2019.

  • 3.

    Ahmad, H.; Wahid, N.; Rahman, M.F.A.; et al. Influence of Fly Ash on the Compressive Strength of Foamed Concrete at Elevated Temperature. In Proceedings of the MATEC Web of Conferences, Perak, Malaysia, 27 August 2014. https://doi.org/10.1051/matecconf/20141501003.

  • 4.

    Song, H.; Xu, L.; Xu, J.; et al. Preparation of ultrafine fly ash-based superhydrophobic composite coating and its application to foam concrete. Polymers 2020, 12, 2187. https://doi.org/10.3390/polym12102187.

  • 5.

    Li, S.; Yan, C.; Ding, Y.; et al. Investigating the mechanical and durability characteristics of fly ash foam concrete. Materials 2022, 15, 6077. https://doi.org/10.3390/ma15176077.

  • 6.

    Suhendro, B. Toward green concrete for better sustainable environment. Procedia Eng. 2014, 95, 305–320. https://doi.org/10.1016/j.proeng.2014.12.190.

  • 7.

    DeRousseau, M.A.; Kasprzyk, J.R.; Srubar, W.V. Computational design optimization of concrete mixtures: A review. Cem. Concr. Res. 2018, 109, 42–53. https://doi.org/10.1016/j.cemconres.2018.03.015.

  • 8.

    Kapil, A.; Jadda, K.; Jee, A.A. Developing machine learning models to predict the fly ash concrete compressive strength. Asian J. Civ. Eng. 2024, 25, 5505–5523. https://doi.org/10.1007/s42107-024-01125-6.

  • 9.

    Wattanapanich, C.; Kanchanomai, C.; Rodsin, K. Optimizing recycled aggregate concrete for severe conditions through machine learning techniques: A review. Eng. Sci. 2024, 31, 1191. https://doi.org/10.48048/wjst.2024.187318.

  • 10.

    Cook, T.R.; Gupton, G.; Modig, Z.; et al. Explaining Machine Learning by Bootstrapping Partial Dependence Functions and Shapley Values; Federal Reserve Bank of Kansas City: Kansas City, MO, USA, 2021. https://doi.org/10.18651/RWP2021-12.

  • 11.

    Hurtado-Alonso, N.; Baena-Moreno, F.M.; Espuelas, S. Optimization of cementitious mixes through response surface method: A systematic review. Arch. Civ. Mech. Eng. 2025, 25, 54. https://doi.org/10.1007/s43452-024-01112-3.

  • 12.

    Zhao, J.; Song, Y.; Ahmad, A.; et al. Prediction of compressive strength of fly ash-based concrete using ensemble and non-ensemble supervised machine learning approaches. Constr. Build. 2021, 308, 125021. https://doi.org/10.1016/j.conbuildmat.2021.125021.

  • 13.

    Torabian Isfahani, F.; Redaelli, E.; Bassani, M.; et al. Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. J. Mater. 2016, 2016, 8453567. https://doi.org/10.1155/2016/8453567.

  • 14.

    Mahmoud, A.A.; El-Sayed, A.A.; Aboraya, A.M.; et al. Synergizing machine learning and experimental analysis to predict post-heating compressive strength in waste concrete. Struct. Concr. 2025, 26, 2916–2950.

  • 15.

    Zeyad, A.M.; Mahmoud, A.A.; El-Sayed, A.A.; et al. Compressive strength of nano concrete materials under elevated temperatures using machine learning. Sci. Rep. 2024, 14, 24246.

  • 16.

    Tikalsky, P.J.; Pospisil, J.; MacDonald, W. A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete. Cem. Concr. Res. 2004, 34, 889–893. https://doi.org/10.1016/j.cemconres.2003.11.005.

  • 17.

    Zhang, C.; Zhu, Z.; Zhang, Y.; et al. Engineering properties and optimal design of foam lightweight soil composite fly ash: An eco-friendly subgrade material. J. Clean. Prod. 2023, 429, 139631. https://doi.org/10.1016/j.jclepro.2023.139631.

  • 18.

    Abd, A.M.; Abd, S.M. Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Stud. Constr. Mater. 2017, 6, 8–15. https://doi.org/10.1016/j.cscm.2016.11.002.

  • 19.

    Jitchaiyaphum, K.; Sinsiri, T.; Jaturapitakkul, C.; et al. Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. Int. J. Miner. Metall. Mater. 2013, 20, 462–471. https://doi.org/10.1007/s12613-013-0752-1.

  • 20.

    Gopalakrishnan, R.; Sounthararajan, V.M.; Mohan, A.; et al. The strength and durability of fly ash and quarry dust lightweight foam concrete. Mater. Today Proc. 2020, 22, 1117–1124. https://doi.org/10.1016/j.matpr.2019.11.317.

  • 21.

    Kearsley, E.P.; Wainwright, P.J. The effect of high fly ash content on the compressive strength of foamed concrete. Cem. Concr. Res. 2001, 31, 105–112. https://doi.org/10.1016/S0008-8846(00)00430-0.

  • 22.

    Asadzadeh, S.; Khoshbayan, S. Multi-objective optimization of influential factors on production process of foamed concrete using Box–Behnken approach. Constr. Build. Mater. 2018, 170, 101–110. https://doi.org/10.1016/j.conbuildmat.2018.02.189.

  • 23.

    Bing, C.; Zhen, W.; Ning, L. Experimental research on properties of high-strength foamed concrete. J. Mater. Civ. Eng. 2012, 24, 113–118. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000353.

  • 24.

    Richard, A.O.; Ramli, M. Experimental production of sustainable lightweight foamed concrete. Br. J. Appl. Sci. Technol. 2013, 3, 994–1005. https://doi.org/10.9734/BJAST/2013/4242.

  • 25.

    Gökçe, H.S.; Hatungimana, D.; Ramyar, K. Effect of fly ash and silica fume on hardened properties of foam concrete. Constr. Build. Mater. 2019, 194, 1–11. https://doi.org/10.1016/j.conbuildmat.2018.11.036.

  • 26.

    Falliano, D.; De Domenico, D.; Ricciardi, G.; et al. Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density. Constr. Build. Mater. 2018, 165, 735–749. https://doi.org/10.1016/j.conbuildmat.2017.12.241.

  • 27.

    Chen, Y.G.; Guan, L.L.; Zhu, S.Y.; et al. Foamed concrete containing fly ash: Properties and application to backfilling. Constr. Build. Mater. 2021, 273, 121685. https://doi.org/10.1016/j.conbuildmat.2020.121685.

  • 28.

    Othman, R.; Jaya, R.P.; Muthusamy, K.; et al. Relation between density and compressive strength of foamed concrete. Materials 2021, 14, 2967. https://doi.org/10.3390/ma14112967.

  • 29.

    Pan, Z.; Hiromi, F.; Wee, T. Preparation of high performance foamed concrete from cement, sand and mineral admixtures. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2007, 22, 295–298. https://doi.org/10.1007/s11595-005-2295-4.

  • 30.

    Ghorbani, S.; Ghorbani, S.; Tao, Z.; et al. Effect of magnetized water on foam stability and compressive strength of foam concrete. Constr. Build. Mater. 2019, 197, 280–290. https://doi.org/10.1016/j.conbuildmat.2018.11.160.

  • 31.

    Wang, M.; Guo, R.; Liu, J.; et al. Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning. PLoS ONE 2022, 17, e0279293. https://doi.org/10.1371/journal.pone.0279293.

  • 32.

    Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. https://doi.org/10.7717/peerj-cs.623.

  • 33.

    Nimat, A.J.; Mohammed, A.A.; Mohammed, A.S. Evaluation of fracture mechanics parameters of light-weight concrete by implementing natural pumice stone as coarse aggregate. Sulaimani J. Eng. Sci. 2023, 9, 61–74.

  • 34.

    Fang, S.; Lam, E.S.S.; Li, B.; et al. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Constr. Build. Mater. 2020, 249, 118799. https://doi.org/10.1016/j.conbuildmat.2020.118799.

  • 35.

    Ngugi, H.N.; Mutuku, R.N.; Gariy, Z.A. Effects of sand quality on compressive strength of concrete: A case of Nairobi County and its environs, Kenya. Open J. Civ. Eng. 2014, 4, 255–273. 

Share this article:
How to Cite
Muhammed, A. M.; Omer , M. A. I.; Haider, R. S.; Abd, N. T.; Mohammed, A. S. Predicting the Compressive Strength of Fly Ash Composite Foam Concrete Using Artificial Neural Networks and Soft Computing Techniques. Bulletin of Computational Intelligence 2026, 2 (1), 83–102. https://doi.org/10.53941/bci.2026.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.