- 1.
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011.
- 2.
Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell 2002, 109, 275–282. https://doi.org/10.1016/s0092-8674(02)00741-9.
- 3.
Bharti, J.; Gogu, P.; Pandey, S.K.; et al. BRAF V600E in cancer: Exploring structural complexities, mutation profiles, and pathway dysregulation. Exp. Cell Res. 2025, 446, 114440. https://doi.org/10.1016/j.yexcr.2025.114440.
- 4.
Keramisanou, D.; Aboalroub, A.; Zhang, Z.; et al. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37. Mol. Cell 2016, 62, 260–271. https://doi.org/10.1016/j.molcel.2016.04.005.
- 5.
Xu, H. ATP-Driven Nonequilibrium Activation of Kinase Clients by the Molecular Chaperone Hsp90. Biophys. J. 2020, 119, 1538–1549. https://doi.org/10.1016/j.bpj.2020.08.038.
- 6.
Hunter, T.; Poon, R.Y.C. Cdc37: A protein kinase chaperone? Trends Cell Biol. 1997, 7, 157–161.
- 7.
Wartmann, M.; Davis, R.J. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J. Biol. Chem. 1994, 269, 6695–6701.
- 8.
Nussinov, R.; Tsai, C.J.; Jang, H. Does Ras Activate Raf and PI3K Allosterically? Front. Oncol. 2019, 9, 1231. https://doi.org/10.3389/fonc.2019.01231.
- 9.
Grbovic, O.M.; Basso, A.D.; Sawai, A.; et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl. Acad. Sci. USA 2006, 103, 57–62. https://doi.org/10.1073/pnas.0609973103.
- 10.
Sharp, S.; Workman, P. Inhibitors of the HSP90 molecular chaperone: Current status. Adv. Cancer Res. 2006, 95, 323–348. https://doi.org/10.1016/S0065-230X(06)95009-X.
- 11.
Schulte, T.W.; Blagosklonny, M.V.; Ingui, C.; et al. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem. 1995, 270, 24585–24588.
- 12.
Polier, S.; Samant, R.S.; Clarke, P.A.; et al. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat. Chem. Biol. 2013, 9, 307–312. https://doi.org/10.1038/nchembio.1212.
- 13.
Kohler, M.; Brummer, T. B-Raf activation loop phosphorylation revisited. Cell Cycle 2016, 15, 1171–1173. https://doi.org/10.1080/15384101.2016.1159111.
- 14.
Lavoie, H.; Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Reviews. Mol. Cell Biol. 2015, 16, 281–298. https://doi.org/10.1038/nrm3979.
- 15.
Zhang, B.H.; Guan, K.L. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 2000, 19, 5429–5439. https://doi.org/10.1093/emboj/19.20.5429.
- 16.
Kornev, A.P.; Taylor, S.S.; Ten Eyck, L.F. A helix scaffold for the assembly of active protein kinases. Proc. Natl. Acad. Sci. USA 2008, 105, 14377–14382. https://doi.org/10.1073/pnas.0807988105.
- 17.
Hu, J.; Ahuja, L.G.; Meharena, H.S.; et al. Kinase regulation by hydrophobic spine assembly in cancer. Mol. Cell Biol. 2015, 35, 264–276. https://doi.org/10.1128/MCB.00943-14.
- 18.
Kim, J.; Ahuja, L.G.; Chao, F.A.; et al. A dynamic hydrophobic core orchestrates allostery in protein kinases. Sci. Adv. 2017, 3, e1600663. https://doi.org/10.1126/sciadv.1600663.
- 19.
Taylor, S.S.; Kornev, A.P. Protein kinases: Evolution of dynamic regulatory proteins. Trends Biochem. Sci. 2011, 36, 65–77. https://doi.org/10.1016/j.tibs.2010.09.006.
- 20.
Diedrich, B.; Rigbolt, K.T.; Roring, M.; et al. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J. 2017, 36, 646–663. https://doi.org/10.15252/embj.201694732.
- 21.
Cook, F.A.; Cook, S.J. Inhibition of RAF dimers: It takes two to tango. Biochem. Soc. Trans. 2021, 49, 237–251. https://doi.org/10.1042/BST20200485.
- 22.
Yao, Z.; Torres, N.M.; Tao, A.; et al. BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms that Determine Their Sensitivity to Pharmacologic Inhibition. Cancer Cell 2015, 28, 370–383. https://doi.org/10.1016/j.ccell.2015.08.001.
- 23.
Yao, Z.; Yaeger, R.; Rodrik-Outmezguine, V.S.; et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature 2017, 548, 234–238. https://doi.org/10.1038/nature23291.
- 24.
Karoulia, Z.; Gavathiotis, E.; Poulikakos, P.I. New perspectives for targeting RAF kinase in human cancer. Nature reviews. Cancer 2017, 17, 676–691. https://doi.org/10.1038/nrc.2017.79.
- 25.
Kordes, M.; Roring, M.; Heining, C.; et al. Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia 2016, 30, 937–946. https://doi.org/10.1038/leu.2015.319.
- 26.
Bjorklund, D.M.; Morgan, R.M.L.; Oberoi, J.; et al. Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant. Biomolecules 2022, 12, 905. https://doi.org/10.3390/biom12070905.
- 27.
Perdew, G.H.; Wiegand, H.; VandenHeuvel, J.P.; et al. A 50 kilodalton protein associated with raf and pp(60v-src) protein kinases is a mammalian homolog of the cell cycle control protein cdc37. Biochemistry 1997, 36, 3600–3607.
- 28.
Wan, X.; Yap, J.; Chen, J.; et al. Oncogenic non-V600 mutations evade the regulatory machinery of RAF including the Cdc37/Hsp90 chaperone and the 14-3-3 scaffold. Theranostics 2025, 15, 2035–2051. https://doi.org/10.7150/thno.103958.
- 29.
Lauinger, M.; Christen, D.; Klar, R.F.U.; et al. BRAF(Deltabeta3-alphaC) in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. Sci. Adv. 2023, 9, eade7486. https://doi.org/10.1126/sciadv.ade7486.
- 30.
Zhao, Y.; Yu, H.; Ida, C.M.; et al. Assessment of RAS Dependency for BRAF Alterations Using Cancer Genomic Databases. JAMA Netw. Open 2021, 4, e2035479. https://doi.org/10.1001/jamanetworkopen.2020.35479.
- 31.
Anastasaki, C.; Orozco, P.; Gutmann, D.H. RAS and beyond: The many faces of the neurofibromatosis type 1 protein. Dis. Model. Mech. 2022, 15, dmm049362. https://doi.org/10.1242/dmm.049362.
- 32.
Liau, N.P.D.; Venkatanarayan, A.; Quinn, J.G.; et al. Dimerization Induced by C-Terminal 14-3-3 Binding Is Sufficient for BRAF Kinase Activation. Biochemistry 2020, 59, 3982–3992. https://doi.org/10.1021/acs.biochem.0c00517.
- 33.
Liau, N.P.D.; Wendorff, T.J.; Quinn, J.G.; et al. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat. Struct. Mol. Biol. 2020, 27, 134–141. https://doi.org/10.1038/s41594-019-0365-0.
- 34.
Kondo, Y.; Ognjenovic, J.; Banerjee, S.; et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 2019, 366, 109–115. https://doi.org/10.1126/science.aay0543.
- 35.
Heidorn, S.J.; Milagre, C.; Whittaker, S.; et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010, 140, 209–221. https://doi.org/10.1016/j.cell.2009.12.040.
- 36.
Poulikakos, P.I.; Zhang, C.; Bollag, G.; et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010, 464, 427–430. https://doi.org/10.1038/nature08902.
- 37.
Hatzivassiliou, G.; Song, K.; Yen, I.; et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010, 464, 431–435. https://doi.org/10.1038/nature08833.
- 38.
Garnett, M.J.; Rana, S.; Paterson, H.; et al. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 2005, 20, 963–969. https://doi.org/10.1016/j.molcel.2005.10.022.
- 39.
Johnson, D.B.; Dahlman, K.B. Class Matters: Sensitivity of BRAF-Mutant Melanoma to MAPK Inhibition. Clin. Cancer Res. 2018, 24, 6107–6109. https://doi.org/10.1158/1078-0432.CCR-18-1795.
- 40.
Baik, C.S.; Myall, N.J.; Wakelee, H.A. Targeting BRAF-Mutant Non-Small Cell Lung Cancer: From Molecular Profiling to Rationally Designed Therapy. Oncologist 2017, 22, 786–796. https://doi.org/10.1634/theoncologist.2016-0458.
- 41.
Mikhailenko, D.S.; Efremov, G.D.; Safronova, N.Y.; et al. Detection of Rare Mutations by Routine Analysis of KRAS, NRAS, and BRAF Oncogenes. Bull. Exp. Biol. Med. 2017, 162, 375–378. https://doi.org/10.1007/s10517-017-3619-z.
- 42.
Center, V.-I.C. My Cancer Genome. Available online: https://www.mycancergenome.org/content/alteration/braf-l597r (accessed on 8 July 2025).
- 43.
Dankner, M.; Rose, A.A.N.; Rajkumar, S.; et al. Classifying BRAF alterations in cancer: New rational therapeutic strategies for actionable mutations. Oncogene 2018, 37, 3183–3199. https://doi.org/10.1038/s41388-018-0171-x.
- 44.
Shackelford, R.; Pollen, M.; Vora, M.; et al. Malignant Melanoma with Concurrent BRAF E586K and NRAS Q81K Mutations. Case Rep. Oncol. 2014, 7, 297–300. https://doi.org/10.1159/000362788.
- 45.
Swofford, B.P.; Homsi, J. Uncommon BRAF Mutations Associated with Durable Response to Immunotherapy in Patients with Metastatic Melanoma. Case Rep. Oncol. Med. 2017, 2017, 8241624. https://doi.org/10.1155/2017/8241624.
- 46.
Lei, L.; Wang, W.X.; Zhu, Y.C.; et al. Association between BRAF mutant classification and the efficacy of pemetrexed-based chemotherapy in Chinese advanced non-small cell lung cancer patients: A multicenter retrospective study. Transl. Cancer Res. 2020, 9, 6039–6049. https://doi.org/10.21037/tcr-20-480.
- 47.
Center, V.-I.C. My Cancer Genome. Available online: https://www.mycancergenome.org/content/alteration/braf-e586k/ (accessed on 8 July 2025).
- 48.
Noeparast, A.; Teugels, E.; Giron, P.; et al. Non-V600 BRAF mutations recurrently found in lung cancer predict sensitivity to the combination of Trametinib and Dabrafenib. Oncotarget 2017, 8, 60094–60108. https://doi.org/10.18632/oncotarget.11635.
- 49.
Liu, J.; Xie, H. BRAF Non-V600 Mutations in Metastatic Colorectal Cancer. Cancers 2023, 15, 4604. https://doi.org/10.3390/cancers15184604.
- 50.
Cremolini, C.; Di Bartolomeo, M.; Amatu, A.; et al. BRAF codons 594 and 596 mutations identify a new molecular subtype of metastatic colorectal cancer at favorable prognosis. Ann. Oncol. 2015, 26, 2092–2097. https://doi.org/10.1093/annonc/mdv290.
- 51.
Chao, W.R.; Lee, Y.J.; Lee, M.Y.; et al. High frequency of BRAF mutations in primary mucinous ovarian carcinoma of Taiwanese patients. Taiwan. J. Obstet. Gynecol. 2021, 60, 1072–1077. https://doi.org/10.1016/j.tjog.2021.09.019.
- 52.
Tsai, J.; Lee, J.T.; Wang, W.; et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA 2008, 105, 3041–3046. https://doi.org/10.1073/pnas.0711741105.
- 53.
Andreadi, C.; Cheung, L.K.; Giblett, S.; et al. The intermediate-activity (L597V)BRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes. Dev. 2012, 26, 1945–1958. https://doi.org/10.1101/gad.193458.112.
- 54.
Dahlman, K.B.; Xia, J.; Hutchinson, K.; et al. BRAF(L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2012, 2, 791–797. https://doi.org/10.1158/2159-8290.CD-12-0097.
- 55.
Davies, H.; Bignell, G.R.; Cox, C.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. https://doi.org/10.1038/nature00766.
- 56.
Wan, P.T.; Garnett, M.J.; Roe, S.M.; et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004, 116, 855–867. https://doi.org/10.1016/s0092-8674(04)00215-6.
- 57.
Woolley, C.E.; Domingo, E.; Fernandez-Tajes, J.; et al. Coevolution of Atypical BRAF and KRAS Mutations in Colorectal Tumorigenesis. Mol. Cancer Res. 2025, 23, 300–312. https://doi.org/10.1158/1541-7786.MCR-24-0464.
- 58.
Dankner, M.; Lajoie, M.; Moldoveanu, D.; et al. Dual MAPK Inhibition Is an Effective Therapeutic Strategy for a Subset of Class II BRAF Mutant Melanomas. Clin. Cancer Res. 2018, 24, 6483–6494. https://doi.org/10.1158/1078-0432.CCR-17-3384.