2512002603
  • Open Access
  • Mini Review

The Central Role and Therapeutic Potential of Cochaperone Networking of Chaperones in the Regulation of Biocondensates

  • Gregory L. Blatch 1,2,*,   
  • Adrienne L. Edkins 1,*

Received: 16 Nov 2025 | Revised: 20 Dec 2025 | Accepted: 23 Dec 2025 | Published: 01 Jan 2026

Abstract

Many heat shock proteins are essential molecular chaperones that safeguard proteome integrity (proteostasis) under both normal and stress conditions. These chaperones, especially heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), and their associated cochaperones, play central roles in cellular protein quality control (PQC) pathways, assisting in the folding of nascent polypeptides, refolding of stress-denatured proteins, and prevention of toxic aggregation. Dysregulation of this proteostasis network is implicated in numerous diseases, from neurodegenerative proteinopathies to cancer. Biocondensates are dynamic, membraneless phase-separated compartments that are emerging as major components of the PQC system. In this review, we discuss how the regulatory networking of chaperones by cochaperones, particularly J domain proteins (JDPs; also called Hsp40 or DNAJ proteins), contributes to biocondensate formation and protein disaggregation to maintain proteostasis. Furthermore, we highlight new mechanistic insights into phase separation and aggregate clearance with therapeutic potential. 

References 

  • 1.

    Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; et al. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. https://doi.org/10.1038/s41580-019-0133-3.

  • 2.

    Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017, 18, 345–360. https://doi.org/10.1038/nrm.2017.20.

  • 3.

    Prodromou, C.; Aran-Guiu, X.; Oberoi, J.; et al. HSP70–HSP90 Chaperone Networking in Protein-Misfolding Disease. In The Networking of Chaperones by Co-Chaperones; Springer: Berlin/Heidelberg, Germany, 2023; pp. 389–425. https://doi.org/10.1007/978-3-031-14740-1_13.

  • 4.

    Edkins, A.L.; Boshoff, A. General Structural and Functional Features of Molecular Chaperones. Adv. Exp. Med. Biol. 2021, 1340, 11–73. https://doi.org/10.1007/978-3-030-78397-6_2.

  • 5.

    Dean, M.E.; Johnson, J.L. Human Hsp90 cochaperones: Perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions. Cell Stress Chaperones 2021, 26, 3–13. https://doi.org/10.1007/s12192-020-01167-0.

  • 6.

    Johnson, J.L. Mutations in Hsp90 cochaperones result in a wide variety of human disorders. Front. Mol. Biosci. 2021, 8, 787260. https://doi.org/10.3389/fmolb.2021.787260.

  • 7.

    Kampinga, H.H.; Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 2010, 11, 579–592. https://doi.org/10.1038/nrm2941.

  • 8.

    Marszalek, J.; De Los Rios, P.; Cyr, D.; et al. J-domain proteins: From molecular mechanisms to diseases. Cell Stress Chaperones 2024, 29, 21–33. https://doi.org/10.1016/j.cstres.2023.12.002.

  • 9.

    Mayer, M.P.; Blair, L.; Blatch, G.L.; et al. Stress biology: Complexity and multifariousness in health and disease. Cell Stress Chaperones 2024, 29, 143–157. https://doi.org/10.1016/j.cstres.2024.01.006.

  • 10.

    Alberti, S.; Hyman, A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 196–213. https://doi.org/10.1038/s41580-020-00326-6.

  • 11.

    Garg, M.; Lamba, S.; Rajyaguru, P.I. Emerging trends in the disassembly of stress granules and P-bodies. Cell Rep. 2025, 44, 116340. https://doi.org/10.1016/j.celrep.2025.116340.

  • 12.

    Riggs, C.L.; Kedersha, N.; Ivanov, P.; et al. Mammalian stress granules and P bodies at a glance. J. Cell Sci. 2020, 133, jcs242487. https://doi.org/10.1242/jcs.242487.

  • 13.

    Liu, J.L.; Gall, J.G. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. USA 2007, 104, 11655–11659. https://doi.org/10.1073/pnas.0704977104.

  • 14.

    Dogra, P.; Kriwacki, R.W. Phase separation via protein-protein and protein-RNA networks coordinates ribosome assembly in the nucleolus. Biochim. Biophys. Acta Gen. Subj. 2025, 1869, 130835. https://doi.org/10.1016/j.bbagen.2025.130835.

  • 15.

    Luo, Y.; Na, Z.; Slavoff, S.A. P-Bodies: Composition, properties, and functions. Biochemistry 2018, 57, 2424–2431. https://doi.org/10.1021/acs.biochem.7b01162.

  • 16.

    Choi, S.; Kim, K.K. Nuclear ribonucleoprotein condensates as platforms for gene expression regulation. Genes Genomics 2025, 47, 935–951. https://doi.org/10.1007/s13258-025-01661-8.

  • 17.

    Staněk, D. Coilin and Cajal bodies. Nucleus 2023, 14, 2256036. https://doi.org/10.1080/19491034.2023.2256036.

  • 18.

    Malatesta, M.; Scassellati, C.; Meister, G.; et al. Ultrastructural characterisation of a nuclear domain highly enriched in survival of motor neuron (SMN) protein. Exp. Cell Res. 2004, 292, 312–321. https://doi.org/10.1016/j.yexcr.2003.08.022.

  • 19.

    Wang, I.F.; Reddy, N.M.; Shen, C.K. Higher order arrangement of the eukaryotic nuclear bodies. Proc. Natl. Acad. Sci. USA 2002, 99, 13583–13588. https://doi.org/10.1073/pnas.212483099.

  • 20.

    Dorosz, K.; Majewska, L.; Kijowski, J. Structure and function of PML nuclear bodies: A brief overview of key cellular roles. Biomolecules 2025, 15, 291. https://doi.org/10.3390/biom15091291.

  • 21.

    Giudice, J.; Jiang, H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat. Rev. Mol. Cell Biol. 2024, 25, 683–700. https://doi.org/10.1038/s41580-024-00739-7.

  • 22.

    Ilık, İ.A.; Aktaş, T. Nuclear speckles: Dynamic hubs of gene expression regulation. FEBS J. 2022, 289, 7234–7245. https://doi.org/10.1111/febs.16117.

  • 23.

    Milcamps, R.; Michiels, T. Involvement of paraspeckle components in viral infections. Nucleus 2024, 15, 2350178. https://doi.org/10.1080/19491034.2024.2350178.

  • 24.

    Wang, Y.; Chen, L.L. Organization and function of paraspeckles. Essays Biochem. 2020, 64, 875–882. https://doi.org/10.1042/ebc20200010.

  • 25.

    Pedley, A.M.; Benkovic, S.J. A new view into the regulation of purine metabolism: The purinosome. Trends Biochem. Sci. 2017, 42, 141–154. https://doi.org/10.1016/j.tibs.2016.09.009.

  • 26.

    Pedley, A.M.; Pareek, V.; Benkovic, S.J. The purinosome: A case study for a mammalian metabolon. Annu. Rev. Biochem. 2022, 91, 89–106. https://doi.org/10.1146/annurev-biochem-032620-105728.

  • 27.

    Akaree, N.; Secco, V.; Levy-Adam, F.; et al. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J. 2025, 292, 3271–3297. https://doi.org/10.1111/febs.17390.

  • 28.

    Kohler, V.; Andréasson, C. Reversible protein assemblies in the proteostasis network in health and disease. Front. Mol. Biosci. 2023, 10, 1155521. https://doi.org/10.3389/fmolb.2023.1155521.

  • 29.

    Glauninger, H.; Wong Hickernell, C.J.; Bard, J.A.M.; et al. Stressful steps: Progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol. Cell 2022, 82, 2544–2556. https://doi.org/10.1016/j.molcel.2022.05.014.

  • 30.

    Rutledge, B.S.; Kim, Y.J.; McDonald, D.W.; et al. Stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) sequesters misfolded proteins during stress. FEBS J. 2025, 292, 3634–3658. https://doi.org/10.1111/febs.17389.

  • 31.

    Amoah, D.P.; Mercier, R.; Alyousef, G.; et al. Collaboration between two conserved sequence motifs drives ATPase stimulation of Hsp90 by Aha1. Protein Sci. 2025, 34, e70359. https://doi.org/10.1002/pro.70359.

  • 32.

    Schwarz, K.; Baindur-Hudson, S.; Blatch, G.L.; et al. Hsp70/Hsp90 organising protein (Hop): Coordinating much more than chaperones. In The Networking of Chaperones by Co-Chaperones; Springer: Berlin/Heidelberg, Germany, 2023; pp. 81–125. https://doi.org/10.1007/978-3-031-14740-1_3.

  • 33.

    Chakraborty, A.; Edkins, A.L. CHIP: A co-chaperone for degradation by the proteasome and lysosome. In The Networking of Chaperones by Co-Chaperones; Springer: Berlin/Heidelberg, Germany, 2023; pp. 351–387. https://doi.org/10.1007/978-3-031-14740-1_12.

  • 34.

    Cheetham, M.E.; Caplan, A.J. Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function. Cell Stress Chaperones 1998, 3, 28–36. https://doi.org/10.1379/1466-1268(1998)003<0028:sfaeod>2.3.co;2.

  • 35.

    Hu, J.; Dong, H.; Li, Y.; et al. Hsp90α forms condensate engaging client proteins with RG motif repeats. Chem. Sci. 2024, 15, 10508–10518. https://doi.org/10.1039/d4sc00267a.

  • 36.

    Zhang, Y.; Pyo, A.G.T.; Kliegman, R.; et al. The exchange dynamics of biomolecular condensates. Elife 2024, 12, RP91680. https://doi.org/10.7554/eLife.91680.

  • 37.

    Li, Y.; Gu, J.; Wang, C.; et al. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience 2022, 25, 104356. https://doi.org/10.1016/j.isci.2022.104356.

  • 38.

    Millar, S.R.; Huang, J.Q.; Schreiber, K.J.; et al. A new phase of networking: The molecular composition and regulatory dynamics of mammalian stress granules. Chem. Rev. 2023, 123, 9036–9064. https://doi.org/10.1021/acs.chemrev.2c00608.

  • 39.

    An, S.; Kumar, R.; Sheets, E.D.; et al. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 2008, 320, 103–106. https://doi.org/10.1126/science.1152241.

  • 40.

    French, J.B.; Zhao, H.; An, S.; et al. Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. Proc. Natl. Acad. Sci. USA 2013, 110, 2528–2533. https://doi.org/10.1073/pnas.1300173110.

  • 41.

    Miki, T.; Hashimoto, M.; Shimizu, M.; et al. Intracellular evaluation of protein droplet-forming capability using self-assembling peptide tags. Chem. Sci. 2025, 16, 14384–14391. https://doi.org/10.1039/d5sc00871a.

  • 42.

    Moritz, M.N.O.; Silva, N.S.M.; Rocha, A.M.F.; et al. Supramolecular assemblies and condensate aggregation: The role of human chaperones during stress. Trans. R. Soc. S. Afr. 2025, 80, 5–25. https://doi.org/10.1080/0035919X.2025.2519206.

  • 43.

    Patel, A.; Mitrea, D.; Namasivayam, V.; et al. Principles and functions of condensate modifying drugs. Front. Mol. Biosci. 2022, 9, 1007744. https://doi.org/10.3389/fmolb.2022.1007744.

  • 44.

    Buchholz, H.E.; Martin, S.A.; Dorweiler, J.E.; et al. Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation. Mol. Biol. Cell 2025, 36, ar66. https://doi.org/10.1091/mbc.E25-01-0027.

  • 45.

    Yoo, H.; Bard, J.A.M.; Pilipenko, E.V.; et al. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates. Mol. Cell 2022, 82, 741–755.e11. https://doi.org/10.1016/j.molcel.2022.01.005.

  • 46.

    Gao, C.; Gu, J.; Zhang, H.; et al. Hyperosmotic-stress-induced liquid-liquid phase separation of ALS-related proteins in the nucleus. Cell Rep. 2022, 40, 111086. https://doi.org/10.1016/j.celrep.2022.111086.

  • 47.

    Walters, R.W.; Muhlrad, D.; Garcia, J.; et al. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 2015, 21, 1660–1671. https://doi.org/10.1261/rna.053116.115.

  • 48.

    Gu, J.; Liu, Z.; Zhang, S.; et al. Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc. Natl. Acad. Sci. USA 2020, 117, 31123–31133. https://doi.org/10.1073/pnas.2002437117.

  • 49.

    Jain, S.; Wheeler, J.R.; Walters, R.W.; et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 2016, 164, 487–498. https://doi.org/10.1016/j.cell.2015.12.038.

  • 50.

    Wang, P.; Wander, C.M.; Yuan, C.X.; et al. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat. Commun. 2017, 8, 82. https://doi.org/10.1038/s41467-017-00088-4.

  • 51.

    Chen, H.J.; Mitchell, J.C.; Novoselov, S.; et al. The heat shock response plays an important role in TDP-43 clearance: Evidence for dysfunction in amyotrophic lateral sclerosis. Brain 2016, 139, 1417–1432. https://doi.org/10.1093/brain/aww028.

  • 52.

    San Gil, R.; Pascovici, D.; Venturato, J.; et al. A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration. Nat. Commun. 2024, 15, 1508. https://doi.org/10.1038/s41467-024-45646-9.

  • 53.

    Klaips, C.L.; Gropp, M.H.M.; Hipp, M.S.; et al. Sis1 potentiates the stress response to protein aggregation and elevated temperature. Nat. Commun. 2020, 11, 6271. https://doi.org/10.1038/s41467-020-20000-x.

  • 54.

    Udan-Johns, M.; Bengoechea, R.; Bell, S.; et al. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum. Mol. Genet. 2014, 23, 157–170. https://doi.org/10.1093/hmg/ddt408.

  • 55.

    Li, S.; Zhang, P.; Freibaum, B.D.; et al. Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum. Mol. Genet. 2016, 25, 936–950. https://doi.org/10.1093/hmg/ddv627.

  • 56.

    Liu, F.; Morderer, D.; Wren, M.C.; et al. Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation. Acta Neuropathol. Commun. 2022, 10, 22. https://doi.org/10.1186/s40478-022-01322-x.

  • 57.

    Rozales, K.; Younis, A.; Saida, N.; et al. Differential roles for DNAJ isoforms in HTT-polyQ and FUS aggregation modulation revealed by chaperone screens. Nat. Commun. 2022, 13, 516. https://doi.org/10.1038/s41467-022-27982-w.

  • 58.

    Markmiller, S.; Soltanieh, S.; Server, K.L.; et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 2018, 172, 590–604.e13. https://doi.org/10.1016/j.cell.2017.12.032.

  • 59.

    Evangelista, B.A.; Cahalan, S.R.; Ragusa, J.V.; et al. Tandem detergent-extraction and immunoprecipitation of proteinopathy: Scalable enrichment of ALS-associated TDP-43 aggregates. iScience 2023, 26, 106645. https://doi.org/10.1016/j.isci.2023.106645.

  • 60.

    Alexandrov, A.I.; Grosfeld, E.V.; Dergalev, A.A.; et al. Analysis of novel hyperosmotic shock response suggests ‘beads in liquid’ cytosol structure. Biol. Open 2019, 8, bio044529. https://doi.org/10.1242/bio.044529.

  • 61.

    Mitrea, D.M.; Mittasch, M.; Gomes, B.F.; et al. Modulating biomolecular condensates: A novel approach to drug discovery. Nat. Rev. Drug Discov. 2022, 21, 841–862. https://doi.org/10.1038/s41573-022-00505-4.

  • 62.

    Hipp, M.S.; Park, S.H.; Hartl, F.U. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 2014, 24, 506–514. https://doi.org/10.1016/j.tcb.2014.05.003.

  • 63.

    Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem. 2017, 86, 27–68. https://doi.org/10.1146/annurev-biochem-061516-045115.

  • 64.

    Doyle, S.M.; Hoskins, J.R.; Wickner, S. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc. Natl. Acad. Sci. USA 2007, 104, 11138–11144. https://doi.org/10.1073/pnas.0703980104.

  • 65.

    Haslberger, T.; Weibezahn, J.; Zahn, R.; et al. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 2007, 25, 247–260. https://doi.org/10.1016/j.molcel.2006.11.008.

  • 66.

    Mogk, A.; Tomoyasu, T.; Goloubinoff, P.; et al. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999, 18, 6934–6949. https://doi.org/10.1093/emboj/18.24.6934.

  • 67.

    Zietkiewicz, S.; Krzewska, J.; Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 2004, 279, 44376–44383. https://doi.org/10.1074/jbc.M402405200.

  • 68.

    Parsell, D.A.; Kowal, A.S.; Singer, M.A.; et al. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 1994, 372, 475–478. https://doi.org/10.1038/372475a0.

  • 69.

    Masison, D.C.; Reidy, M.; Kumar, J. J Proteins counteract amyloid propagation and toxicity in yeast. Biology 2022, 11, 1292. https://doi.org/10.3390/biology11091292.

  • 70.

    Wickner, R.B.; Hayashi, Y.; Edskes, H.K. Anti-prion systems in Saccharomyces cerevisiae. J. Neurochem. 2025, 169, e70045. https://doi.org/10.1111/jnc.70045.

  • 71.

    Shorter, J.; Southworth, D.R. Spiraling in control: Structures and mechanisms of the Hsp104 disaggregase. Cold Spring Harb. Perspect. Biol. 2019, 11, a034033. https://doi.org/10.1101/cshperspect.a034033.

  • 72.

    Kushnirov, V.V.; Dergalev, A.A.; Alexandrov, A.I. Amyloid fragmentation and disaggregation in yeast and animals. Biomolecules 2021, 11, 1884. https://doi.org/10.3390/biom11121884.

  • 73.

    Wyszkowski, H.; Janta, A.; Sztangierska, W.; et al. Class-specific interactions between Sis1 J-domain protein and Hsp70 chaperone potentiate disaggregation of misfolded proteins. Proc. Natl. Acad. Sci. USA 2021, 118, e2108163118. https://doi.org/10.1073/pnas.2108163118.

  • 74.

    Stanford, K.E.; Zhao, X.; Kim, N.; et al. Overexpression of Hsp104 by causing dissolution of the prion seeds cures the yeast [PSI+] prion. Int. J. Mol. Sci. 2023, 24, 10833. https://doi.org/10.3390/ijms241310833.

  • 75.

    Nillegoda, N.B.; Bukau, B. Metazoan Hsp70-based protein disaggregases: Emergence and mechanisms. Front. Mol. Biosci. 2015, 2, 57. https://doi.org/10.3389/fmolb.2015.00057.

  • 76.

    Kampinga, H.H.; Hageman, J.; Vos, M.J.; et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009, 14, 105–111. https://doi.org/10.1007/s12192-008-0068-7.

  • 77.

    Gao, X.; Carroni, M.; Nussbaum-Krammer, C.; et al. Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. Mol. Cell 2015, 59, 781–793. https://doi.org/10.1016/j.molcel.2015.07.012.

  • 78.

    Wentink, A.S.; Nillegoda, N.B.; Feufel, J.; et al. Molecular dissection of amyloid disaggregation by human HSP70. Nature 2020, 587, 483–488. https://doi.org/10.1038/s41586-020-2904-6.

  • 79.

    Ayala Mariscal, S.M.; Pigazzini, M.L.; Richter, Y.; et al. Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT. Nat. Commun. 2022, 13, 4692. https://doi.org/10.1038/s41467-022-32370-5.

  • 80.

    Faust, O.; Abayev-Avraham, M.; Wentink, A.S.; et al. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Nature 2020, 587, 489–494. https://doi.org/10.1038/s41586-020-2906-4.

  • 81.

    Irwin, R.; Faust, O.; Petrovic, I.; et al. Hsp40s play complementary roles in the prevention of tau amyloid formation. Elife 2021, 10, e69601. https://doi.org/10.7554/eLife.69601.

  • 82.

    De Los Rios, P.; Ben-Zvi, A.; Slutsky, O.; et al. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl. Acad. Sci. USA 2006, 103, 6166–6171. https://doi.org/10.1073/pnas.0510496103.

  • 83.

    Goloubinoff, P.; De Los Rios, P. The mechanism of Hsp70 chaperones: (entropic) Pulling the models together. Trends Biochem. Sci. 2007, 32, 372–380. https://doi.org/10.1016/j.tibs.2007.06.008.

  • 84.

    Schneider, M.M.; Gautam, S.; Herling, T.W.; et al. The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat. Commun. 2021, 12, 5999. https://doi.org/10.1038/s41467-021-25966-w.

  • 85.

    Vilar, J.M.G.; Rubi, J.M.; Saiz, L. Chaperone-driven entropic separation of amyloid nanofilament bundles. Phys. Rev. X 2025, 15, 011041. https://doi.org/10.1103/PhysRevX.15.011041.

  • 86.

    Wentink, A.; Rosenzweig, R. Protein disaggregation machineries in the human cytosol. Curr. Opin. Struct. Biol. 2023, 83, 102735. https://doi.org/10.1016/j.sbi.2023.102735.

  • 87.

    Rebeaud, M.E.; Fauvet, B.; De Los Rios, P.; et al. Hsp110 nucleotide exchange factors may amplify Hsp70-disaggregation by enhanced entropic pulling. J. Biol. Chem. 2025, 301, 110450. https://doi.org/10.1016/j.jbc.2025.110450.

  • 88.

    Martín-Aparicio, E.; Yamamoto, A.; Hernández, F.; et al. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington’s disease. J. Neurosci. 2001, 21, 8772–8781. https://doi.org/10.1523/jneurosci.21-22-08772.2001.

  • 89.

    Yamamoto, A.; Lucas, J.J.; Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 2000, 101, 57–66. https://doi.org/10.1016/s0092-8674(00)80623-6.

  • 90.

    DeVos, S.L.; Miller, R.L.; Schoch, K.M.; et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 2017, 9, eaag0481. https://doi.org/10.1126/scitranslmed.aag0481.

  • 91.

    Sydow, A.; Van der Jeugd, A.; Zheng, F.; et al. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J. Neurosci. 2011, 31, 2511–2525. https://doi.org/10.1523/jneurosci.5245-10.2011.

  • 92.

    Van der Jeugd, A.; Hochgräfe, K.; Ahmed, T.; et al. Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta. Neuropathol. 2012, 123, 787–805. https://doi.org/10.1007/s00401-012-0987-3.

  • 93.

    Alam, P.; Bousset, L.; Melki, R.; et al. α-Synuclein oligomers and fibrils: A spectrum of species, a spectrum of toxicities. J. Neurochem 2019, 150, 522–534. https://doi.org/10.1111/jnc.14808.

  • 94.

    Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. https://doi.org/10.15252/emmm.201606210.

  • 95.

    Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112. https://doi.org/10.1038/nrm2101.

  • 96.

    Tittelmeier, J.; Sandhof, C.A.; Ries, H.M.; et al. The HSP110/HSP70 disaggregation system generates spreading-competent toxic α-synuclein species. EMBO J. 2020, 39, e103954. https://doi.org/10.15252/embj.2019103954.

  • 97.

    Bard, J.A.M.; Goodall, E.A.; Greene, E.R.; et al. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem. 2018, 87, 697–724. https://doi.org/10.1146/annurev-biochem-062917-011931.

  • 98.

    Hjerpe, R.; Bett, J.S.; Keuss, M.J.; et al. UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 2016, 166, 935–949. https://doi.org/10.1016/j.cell.2016.07.001.

  • 99.

    Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 2018, 20, 233–242. https://doi.org/10.1038/s41556-018-0037-z.

  • 100.

    Lamark, T.; Johansen, T. Mechanisms of selective autophagy. Annu. Rev. Cell Dev. Biol. 2021, 37, 143–169. https://doi.org/10.1146/annurev-cellbio-120219-035530.

  • 101.

    Ma, X.; Lu, C.; Chen, Y.; et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 2022, 185, 1325–1345.e22. https://doi.org/10.1016/j.cell.2022.03.005.

  • 102.

    Mauthe, M.; Kampinga, H.H.; Hipp, M.S.; et al. Digest it all: The lysosomal turnover of cytoplasmic aggregates. Trends Biochem. Sci. 2023, 48, 216–228. https://doi.org/10.1016/j.tibs.2022.09.012.

  • 103.

    Mauthe, M.; van de Beek, N.; Mari, M.; et al. A chaperone-proteasome-based fragmentation machinery is essential for aggrephagy. Nat. Cell Biol. 2025, 27, 1448–1464. https://doi.org/10.1038/s41556-025-01747-1.

Share this article:
How to Cite
Blatch, G. L.; Edkins, A. L. The Central Role and Therapeutic Potential of Cochaperone Networking of Chaperones in the Regulation of Biocondensates. Biomolecular Mechanisms and Innovations 2026, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.