- 1.
Shaw, M.-A. Human genetic susceptibility to Chagas disease. In American Trypanosomiasis Chagas Disease, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 27, pp. 629–652. https://doi.org/10.1016/B978-0-12-801029-7.00028-9.
- 2.
Acosta-Herrera, M.; Strauss, M.; Casares-Mar, D.; et al. Chagas Genetics CYTED Network. Genomic medicine in Chagas disease. Acta Trop. 2019, 197, 105062. https://doi.org/10.1016/j.actatropica.2019.105062.
- 3.
Cristovao-Silva, A.C.; Brelaz-de-Castro, M.C.A.; Hernandes, M.Z.; et al. Chagas disease: Immunology of the disease at a glance. Cytokine Growth Factor. Rev. 2021, 62, 15–22. https://doi.org/10.1016/j.cytogfr.2021.10.001.
- 4.
Macaluso, G.; Grippi, F.; DiBella, S.; et al. A Review on the Immunological Response against Trypanosoma cruzi. Pathogens 2023, 12, 282. https://doi.org/10.3390/pathogens12020282.
- 5.
Dutra, W.O.; Rocha, M.O.C.; Teixeira, M.M. The clinical immunology of human Chagas disease. Trends Parasitol. 2005, 21, 581–587. https://doi.org/10.1016/j.pt.2005.09.007.
- 6.
Machado, F.S.; Dutra, W.O.; Esper, L.; et al. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin. Immunopathol. 2012, 34, 753–770. https://doi.org/10.1007/s00281-012-0351-7.
- 7.
Reis, P.G.; Ayo, C.M.; de Mattos, L.C.; et al. Genetic Polymorphisms of IL17 and Chagas Disease in the South and Southeast of Brazil. J. Immunol. Res. 2017, 2017, 1017621. https://doi.org/10.1155/2017/1017621.
- 8.
Antunes de Andrade, F.; Freitas Lidani, K.C.; Picceli, V.; et al. C3 gene polymorphism and cardiometabolic risk factors in chronic Chagas disease. Immunobiology 2016, 221, 1131–1225. https://doi.org/10.1016/j.imbio.2016.06.134.
- 9.
Protasio da Silva, T.d.E.S.; Alvarado-Arnez, L.E.; Batista, A.M.; et al. Influence of angiotensin II type 1 receptors and angiotensin-converting enzyme I/D gene polymorphisms on the progression of Chagas’ heart disease in a Brazilian cohort: Impact of therapy on clinical outcomes. PLoS Negl. Trop. Dis. 2024, 18, e0012703. https://doi.org/10.1371/journal.pntd.0012703.
- 10.
Gomes dos Santos, A.; Watanabe, E.H.; Ferreira, D.T.; et al. A Specific IL6 Polymorphic Genotype Modulates the Risk of Trypanosoma cruzi Parasitemia While IL18, IL17A, and IL1B Variant Profiles and HIV Infection Protect Against Cardiomyopathy in Chagas Disease. Front. Immunol. 2020, 11, 521409. https://doi.org/10.3389/fimmu.2020.521409.
- 11.
Sandri, T.L.; Freitas Lidani, K.C.; Antunes Andrade, F.; et al. Human complement receptor type 1 (CR1) protein levels and genetic variants in chronic Chagas Disease. Sci. Rep. 2018, 8, 526. https://doi.org/10.1038/s41598-017-18937-z.
- 12.
Batista, A.M.; Alvarado-Arnez, L.E.; Alves, S.M.; et al. Genetic Polymorphism at CCL5 Is Associated with Protection in Chagas’ Heart Disease: Antagonistic Participation of CCR1+ and CCR5+ Cells in Chronic Chagasic Cardiomyopathy. Front. Immunol. 2018, 9, 615. https://doi.org/10.3389/fimmu.2018.00615.
- 13.
Cavalcanti, E.O.; Lidani, K.C.F.; Toré, C.d.F.O.; et al. MASP1 Gene Polymorphism and MASP-3 Serum Levels in Patients with Chronic Chagas Disease. Immunol. Investig. 2022, 51, 2108–2121. https://doi.org/10.1080/08820139.2022.2110503.
- 14.
Luz, P.R.; Miyazaki, M.I.; Chiminacio Neto, N.; et al. Genetically Determined MBL Deficiency Is Associated with Protection against Chronic Cardiomyopathy in Chagas Disease. PLoS Negl. Trop. Dis. 2016, 10, e0004257. https://doi.org/10.1371/journal.pntd.0004257.
- 15.
Juiz, N.A.; Estupiñan, E.; Hernandez, D.; et al. Association study between CCR2-CCR5 genes polymorphisms and chronic Chagas heart disease in Wichi and in admixed populations from Argentina. PLoS Negl. Trop. Dis. 2019, 13, e0007033. https://doi.org/10.1371/journal.pntd.0007033.
- 16.
Clipman, S.J.; Henderson-Frost, J.; Fu, K.Y.; et al. Genetic association study of NLRP1, CARD, and CASP1 inflammasome genes with chronic Chagas cardiomyopathy among Trypanosoma cruzi seropositive patients in Bolivia. PLoS ONE 2018, 13, e0192378. https://doi.org/10.1371/journal.pone.0192378.
- 17.
Lima-Costa, M.F.; Macinko, J.; Mambrini, J.V.d.M.; et al. Genomic African and Native American Ancestry and Chagas Disease: The Bambui (Brazil) Epigen Cohort Study of Aging. PLoS Negl. Trop. Dis. 2016, 10, e0004724. https://doi.org/10.1371/journal.pntd.0004724.
- 18.
Farage Frade-Barros, A.; Ianni, B.M.; Cabantous, S.; et al. Polymorphisms in Genes Affecting Interferon-γ Production and Th1 T Cell Differentiation Are Associated with Progression to Chagas Disease Cardiomyopathy. Front. Immunol. 2020, 11, 1386. https://doi.org/10.3389/fimmu.2020.01386.
- 19.
Ayo, C.M.; Bestetti, R.B.; de Campos Junior, E.; et al. MICA and KIR: Immunogenetic Factors Influencing Left Ventricular Systolic Dysfunction and Digestive Clinical Form of Chronic Chagas Disease. Front. Immunol. 2021, 12, 714766. https://doi.org/10.3389/fimmu.2021.714766.
- 20.
Bosch-Nicolau, P.; Salvador, F.; Sanchez-Montalva, A.; et al. Association of HLA-B*35 and moderate or severe cutaneous reactions secondary to benznidazole treatment in chronic Chagas disease. Clin. Microbiol. Infect. 2022, 28, 881.e1–881.e5. https://doi.org/10.1016/j.cmi.2021.11.02.
- 21.
Calzada, J.E.; Beraun, Y.; Gonzalez, C.I.; et al. Transforming growth factor beta 1 (TGF beta 1) gene polymorphisms and Chagas disease susceptibility in Peruvian and Colombian patients. Cytokine 2009, 45, 149–153. https://doi.org/10.1016/j.cyto.2008.11.013.
- 22.
Ferreira, R.R.; Madeira, F.d.S.; Alves, G.F.; et al. TGF-β Polymorphisms Are a Risk Factor for Chagas Disease. Dis. Markers 2018, 2018, 4579198. https://doi.org/10.1155/2018/4579198.
- 23.
Leon Rodriguez, D.A.; Acosta-Herrera, M.; Carmona, F.D.; et al. Comprehensive analysis of three TYK2 gene variants in the susceptibility to Chagas disease infection and cardiomyopathy. PLoS ONE 2018, 13, e0190591. https://doi.org/10.1371/journal.pone.0190591.
- 24.
Sandri, T.L.; Andrade, F.A.; Lidani, K.C.F.; et al. Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas Disease. PLoS Negl. Trop. Dis. 2019, 13, e0007324. https://doi.org/10.1371/journal.pntd.0007324.
- 25.
Freitas Lidani, K.C.; Antunes Andrade, F.; Holsbach Beltrame, M.; et al. Ficolin-3 serum levels and FCN3 polymorphisms in chronic Chagas disease. Immunobiology 2016, 221, 1131–1225. https://doi.org/10.1016/j.imbio.2016.06.135.
- 26.
Sanchez, G.; Salazar-Alcala, E.; Hernandez, F.; et al. Polymorphisms of the TLR4 gene: Risk factor for chronicity and severity in oral vectorial Chagas disease. Exp. Parasitol. 2022, 238, 108243. https://doi.org/10.1016/j.exppara.2022.108243.
- 27.
Fu, K.Y.-J.; Zamudio, R.; Henderson-Frost, J.; et al. Association of caspase-1 polymorphisms with Chagas cardiomyopathy among individuals in Santa Cruz, Bolivia. Rev. Soc. Bras. Med. Trop. 2017, 50, 516–523. https://doi.org/10.1590/0037-8682-0015-2017.
- 28.
Correa, D.E.d.C.; Ayo, C.M.; Visentainer, J.E.L.; et al. Human platelet antigen polymorphisms and the risk of chronic Chagas diseasecardiomyopathy. Platelets 2020, 31, 272–275. https://doi.org/10.1080/09537104.2019.1667496.
- 29.
Rubia Bernardo, C.; Silveira Camargoa, A.V.; Ronchi, L.S.; et al. ABO, Secretor and Lewis histo-blood group systems influence the digestive form of Chagas disease. Infect. Genet. Evol. 2016, 45, 170–175. https://doi.org/10.1016/j.meegid.2016.08.027.
- 30.
Strauss, M.; Acosta-Herrera, M.; Alcaraz, A.; et al. Association of IL18 genetic polymorphisms with Chagas disease in Latin American populations. PLoS Negl. Trop. Dis. 2019, 13, e0007859. https://doi.org/10.1371/journal.pntd.0007859.
- 31.
Strauss, M.; Casares-Marfil, D.; Alcaraz, A.; et al. Lack of Association of IL6 polymorphism with the susceptibility to Chagas disease in Latin American populations. Acta Trop. 2020, 210, 105546. https://doi.org/10.1016/j.actatropica.2020.105546.
- 32.
Grijalva, A.; Gallo Vaulet, L.; Agüero, R.N.; et al. Interleukin 10 Polymorphisms as Risk Factors for Progression to Chagas Disease Cardiomyopathy: A Case-Control Study and Meta-Analysis. Front. Immunol. 2022, 13, 946350. https://doi.org/10.3389/fimmu.2022.946350.
- 33.
Strauss, M.; Palma-Vega, M.; Casares-Marfil, D.; et al. Genetic polymorphisms of IL17A associated with Chagas disease: Results from a meta-analysis in Latin American populations. Sci. Rep. 2020, 10, 5015. https://doi.org/10.1038/s41598-020-61965-5.
- 34.
Ferreira, J.M.; Santos, B.R.C.d.; Moura, E.l.d.; et al. Narrowing the Relationship between Human CCR5 Gene Polymorphisms and Chagas Disease: Systematic Review and Meta-Analysis. Life 2023, 13, 1677. https://doi.org/10.3390/life13081677.
- 35.
Braga Lima, A.P.; de Oliveira, M.T.; Silva, R.R.; et al. Evaluation of parasite and host genetics in two generations of a family with Chagas disease. Parasitol. Res. 2018, 117, 3009–3013. https://doi.org/10.1007/s00436-018-5969-5.
- 36.
Ouarhache, M.; Marquet, S.; Farage Frade, A.; et al. Rare Pathogenic Variants in Mitochondrial and Inflammation-Associated Genes May Lead to Inflammatory Cardiomyopathy in Chagas Disease. J. Clin. Immunol. 2021, 41, 1048–1063. https://doi.org/10.1007/s10875-021-01000-y.
- 37.
Deng, X.; Sabino, E.C.; Cunha-Neto, E.; et al. Genome wide association study (GWAS) of Chagas cardiomyopathy in Trypanosoma cruzi seropositive subjects. PLoS ONE 2013, 8, e79629. https://doi.org/10.1371/journal.pone.0079629.
- 38.
Casares-Marfil, D.; Strauss, M.; Bosch-Nicolau, P.; et al. A Genome-Wide Association Study Identifies Novel Susceptibility loci in Chronic Chagas Cardiomyopathy. Clin. Infect. Dis. 2021, 73, 672–679. https://doi.org/10.1093/cid/ciab090.
- 39.
Casares-Marfil, D.; Kerick, M.; Andres-Leon, E.; et al. GWAS loci associated with Chagas cardiomyopathy influences DNA methylation levels. PLoS Negl. Trop. Dis. 2021, 15, e0009874. https://doi.org/10.1371/journal.pntd.0009874.
- 40.
Maldonado, E.; Rojas, D.A.; Urbina, F.; et al. The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors. Oxidative Med. Cell. Longev. 2021, 2021, 4993452. https://doi.org/10.1155/2021/4993452.
- 41.
Lassen, O.; Tabares, S.; Ojeda, S.; et al. Genetic Polymorphisms of Manganese-Dependent Superoxide Dismutase in Chagas Disease. Infect. Dis. Clin. Pr. 2018, 26, 159–164. https://doi.org/10.1097/IPC.0000000000000567.
- 42.
Alves, S.M.M.; Alvarado-Arnês, L.E.; de Melo Cavalcanti, M.d.G.A.; et al. Influence of Angiotensin-converting Enzyme Insertion/Deletion Gene Polymorphism in Progression of Chagas Heart Disease. J. Braz. Soc. Trop. Med. 2020, 53, e20190488. https://doi.org/10.1590/0037-8682-0488-2019.
- 43.
Renaux, A.; Papadimitriou, S.; Versbraegen, N.; et al. ORVAL: A novel platform for the prediction and exploration of disease-causing oligogenic variant combinations. Nucleic Acids Res. 2019, 47, W93–W98. https://doi.org/10.1093/nar/gkz437.