2512002533
  • Open Access
  • Review

Broad Learning System in DataMining andMachine Learning

  • Fan Yun *,   
  • Zhiwen Yu,   
  • Kaixiang Yang

Received: 04 Sep 2025 | Revised: 16 Nov 2025 | Accepted: 16 Dec 2025 | Published: 17 Dec 2025

Abstract

The paper presents a comprehensive survey of Broad Learning System (BLS) in data mining and machine learning. BLS is characterized as a lightweight, singlelayer neural network that leverages a pseudo-inverse-based weight-update mechanism. BLS supports dynamic training through incremental learning and pruning strategies. In recent years, BLS has garnered increasing attention and given rise to numerous variants. To enhance BLS performance and robustness, researchers have integrated kernel methods, manifold learning, and ensemble learning techniques into the BLS framework. Finally, the paper outlines prospective directions for future BLS research.

References 

  • 1.

    Jiawei, H.; Micheline, K. Data Mining: Concepts and Techniques. Data Min. Concepts Model. Methods Algorithms Second
    Ed. 2006, 5, 1–18.

  • 2.

    LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.

  • 3.

    Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; et al. Generative Adversarial Nets. In Advances in Neural Information Processing Systems; Curran: Red Hook, NY, USA, 2014; pp. 2672–2680.

  • 4.

    Douillard, A.; Ram´e, A.; Couairon, G.; et al. DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 9275–9285.

  • 5.

    Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran: Red Hook, NY, USA, 2012; pp. 1097–1105.

  • 6.

    Chen, C.P.; Liu, Z. Broad learning system: A new learning paradigm and system without going deep. In Proceedings of the 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China, 19–21 May 2017; pp. 1271–1276.

  • 7.

    Chen, C.P.; Liu, Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 10–24.

  • 8.

    Golub, G.; Kahan, W. Calculating the Singular Values and Pseudo-Inverse of a Matrix. J. Soc. Ind. Appl. Math. 1965, 2, 205–224.

  • 9.

    Chen, C.L.P.; Liu, Z.; Feng, S. Universal Approximation Capability of Broad Learning System and Its Structural Variations. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1191–1204.

  • 10.

    Yun, F.; Yu, Z.; Yang, K.; et al. AdaBoost-Stacking Based on Incremental Broad Learning System. IEEE Trans. Knowl. Data Eng. 2024, 36, 7585–7599.

  • 11.

    Hu, X.; Chen, C.L.P.; Zhang, T. Broad Metric Learning: A Fast and Efficient Discriminative Metric Learning Model. IEEE Trans. Cybern. 2025, 11, 4675–4688.

  • 12.

    Yang, K.; Liu, Y.; Yu, Z.; et al. Extracting and Composing Robust Features With Broad Learning System. IEEE Trans. Knowl. Data Eng. 2023, 35, 3885–3896.

  • 13.

    Yang, K.; Wang, H.; Yang, Q.; et al. An Ensemble Broad Learning Scheme for Short-Term Load Forecasting. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 4901–4905.

  • 14.

    Zhang, W.; Liu, Z.; Jiang, Y.; et al. Self-balancing Incremental Broad Learning System with privacy protection. Neural Netw. 2024, 178, 106436.

  • 15.

    Yang, K.; Shi, Y.; Yu, Z.; et al. Stacked One-Class Broad Learning System for Intrusion Detection in Industry 4.0. IEEE Trans. Ind. Inform. 2023, 19, 251–260.

  • 16.

    Zhu, C.; Pu, Y.; Lyu, Z.; et al. Multidimensional information fusion and broad learning system-based condition recognition for energy pipeline safety. Knowl.-Based Syst. 2024, 300, 112259.

  • 17.

    Zhong, Z.; Yang, K.; Yu, Z.; et al. Towards Efficient Anomaly Detection Using Memory Broad Learning System. In Proceedings of the 2023 9th International Conference on Control Science and Systems Engineering (ICCSSE), Shenzhen, China, 16–18 June 2023; pp. 252–257.

  • 18.

    Yang, K.; Chen, W.; Bi, J.; et al. Multi-view broad learning system for electricity theft detection. Appl. Energy 2023, 352, 121914.

  • 19.

    Jin, J.; Li, Y.; Yang, T.; et al. Discriminative group-sparsity constrained broad learning system for visual recognition. Inf. Sci. 2021, 576, 800–818.

  • 20.

    Lei, C.; Guo, J.; Chen, C.L.P. ConvBLS: An Effective and Efficient Incremental Convolutional Broad Learning System Combining Deep and Broad Representations. IEEE Trans. Artif. Intell. 2024, 5, 5075–5089.

  • 21.

    Zhong, Z.; Yu, Z.; Fan, Z.; et al. Adaptive Memory Broad Learning System for Unsupervised Time Series Anomaly Detection. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 8331–8345.

  • 22.

    Lin, M.; Yu, Z.; Yang, K.; et al. Dynamic Chunk-based Active Learning Based on Enhanced Broad Learning System for Imbalanced Drifting Data Streams. IEEE Trans. Knowl. Data Eng. 2025, 1–13.

  • 23.

    Lin, Y.; Yu, Z.; Yang, K.; et al. Ensemble Denoising Autoencoders Based on Broad Learning System for Time-Series Anomaly Detection. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 13913–13926.

  • 24.

    Li, P.; Zhong, Z.; Zhang, T.; et al. A New Perspective on Time Series Anomaly Detection: Faster Patch-based Broad Learning System. arXiv 2024, arXiv:2412.05498.

  • 25.

    Zhang, L.; Yu, Z.; Yang, K.; et al. Transferable and discriminative broad network for unsupervised domain adaptation. Knowl.-Based Syst. 2025, 315, 113297.

  • 26.

    Wang, H.; Wang, X.; Chen, C.L.P.; et al. Hyperspectral Image Classification Based On Domain Adaptation Broad Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 3006–3018.

  • 27.

    Yun, F.; Yu, Z.; Yang, K.; et al. Ensemble Multi-Kernel Broad Learning System for Disease Diagnosis. In Proceedings of the 2024 IEEE International Conference on Medical Artificial Intelligence (MedAI), Shanghai, China, 8–10 October 2024; pp. 97–104.

  • 28.

    Tang, L.; Chen, W.; Yu, Z.; et al. Adaptive Fuzzy Weighted Broad Network for Imbalanced Medical Diagnosis. In Proceedings of the 2024 IEEE International Conference on Medical Artificial Intelligence (MedAI), Shanghai, China, 8–10 October 2024; pp. 145–152.

  • 29.

    Yu, Z.; Lan, K.; Liu, Z.; et al. Progressive Ensemble Kernel-Based Broad Learning System for Noisy Data Classification. IEEE Trans. Cybern. 2022, 52, 9656–9669.

  • 30.

    Zhang, Y.; Ke, S.; Li, J.; et al. DHR-BLS: A Huber-type robust broad learning system with its distributed version. Knowl.-Based Syst. 2025, 314, 113184.

  • 31.

    Chen, W.; Yang, K.; Yu, Z.; et al. Adaptive Broad Network With Graph-Fuzzy Embedding for Imbalanced Noise Data. IEEE Trans. Fuzzy Syst. 2025, 33, 1949–1962.

  • 32.

    Lin, Y.; Yu, Z.; Yang, K.; et al. Boosting Adaptive Weighted Broad Learning System for Multi-Label Learning. IEEE/CAA J. Autom. Sin. 2024, 11, 2204–2219.

  • 33.

    Yang, K.; Chen, W.; Shi, Y.; et al. Simplified Kernel-Based Cost-Sensitive Broad Learning System for Imbalanced Fault Diagnosis. IEEE Trans. Artif. Intell. 2024, 5, 6629–6644.

  • 34.

    Chen,W.; Yu, Z.; Yang, K.; et al. Minimum variance weighted broad cascade network structure for imbalanced classification. Knowl.-Based Syst. 2025, 324, 113803.

  • 35.

    Yu, Z.; Zhong, Z.; Yang, K.; et al. Broad Learning Autoencoder With Graph Structure for Data Clustering. IEEE Trans. Knowl. Data Eng. 2024, 36, 49–61.

  • 36.

    Shi, Y.; Yang, K.; Yu, Z.; et al. Adaptive Ensemble Clustering With Boosting BLS-Based Autoencoder. IEEE Trans. Knowl. Data Eng. 2023, 35, 12369–12383.

  • 37.

    Shi, Y.; Chen, D.; Chen, L.; et al. Ensemble Clustering Based on Manifold Broad Learning System. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 2227–2232.

  • 38.

    Guo, J.; Chen, C.L.P. A Robust Semi-Supervised Broad Learning System Guided by Ensemble-Based Self-Training. IEEE Trans. Cybern. 2024, 54, 6410–6422.

  • 39.

    Guo, J.; Liu, Z.; Chen, C.L.P. An Incremental-Self-Training-Guided Semi-Supervised Broad Learning System. IEEE Trans. Neural Netw. Learn. Syst. 2024, 36, 7196–7210.

  • 40.

    Guo, L.; Li, R.; Jiang, B. An ensemble broad learning scheme for semisupervised vehicle type classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5287–5297.

  • 41.

    Pao, Y.H.; Takefuji, Y. Functional-link net computing: theory, system architecture, and functionalities. Computer 1992, 25, 76–79.

  • 42.

    Ren, Y.; Suganthan, P.N.; Srikanth, N.; et al. Random vector functional link network for short-term electricity load demand forecasting. Inf. Sci. Int. J. 2016, 367/368, 1078–1093.

  • 43.

    Ng, A. Sparse Autoencoder; CS294A Lecture Notes; Stanford University: Stanford, CA, USA, 2011.

  • 44.

    Zheng, Y.; Chen, B.; Wang, S.; et al. Broad learning system based on maximum correntropy criterion. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3083–3097.

  • 45.

    Zhang, S.; Liu, Z.; Chen, C.P. Broad learning system based on the quantized minimum error entropy criterion. Sci. China Inf. Sci. 2022, 65, 222203.

  • 46.

    Guo, J.; Chen, C.L.P.; Liu, Z.; et al. Dynamic Neural Network Structure: A Review for Its Theories and Applications. IEEE Trans. Neural Netw. Learn. Syst. 2024, 36, 4246–4266.

  • 47.

    Yang, K.; Yu, Z.; Chen, C.P.; et al. Incremental weighted ensemble broad learning system for imbalanced data. IEEE Trans. Knowl. Data Eng. 2021, 34, 5809–5824.

  • 48.

    Liu, W.; Yang, H.; Sun, Y.; et al. A Broad Neural Network Structure for Class Incremental Learning. in International Symposium on Neural Networks; Springer International Publishing: Cham, Switzerland, 2018.

  • 49.

    Bakhshi, S.; Ghahramanian, P.; Bonab, H.; et al. A Broad Ensemble Learning System for Drifting Stream Classification. IEEE Access 2023, 11, 89315–89330.

  • 50.

    Zhong, L.; Philip Chen, C.L.; Guo, J.; et al. Robust Incremental Broad Learning System for Data Streams of Uncertain Scale. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 7580–7593.

  • 51.

    Lei, C.; Chen, G.Z.; Chen, C.L.P.; et al. Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification. arXiv 2025, arXiv:2501.16932.

  • 52.

    Shi, Q.; Suganthan, P.N.; Katuwal, R. Weighting and Pruning based Ensemble Deep Random Vector Functional Link Network for Tabular Data Classification. Pattern Recognit. 2022, 132, 108879.

  • 53.

    Liu, Y.; Yang, K.; Yu, Z.; et al. Pruning Broad Learning System based on Adaptive Feature Evolution. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–9.

  • 54.

    Chu, F.; Su, J.; Liang, T.; et al. Least Angle Regression Adaptive Incremental Broad Learning System. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 7153–7157.

  • 55.

    Liu, W.; Bai, Y.; Jin, X.; et al. Broad Echo State Network with Reservoir Pruning for Nonstationary Time Series Prediction. Comput. Intell. Neurosci. 2022, 2022, 3672905.

  • 56.

    Haigang, L.I.; Sun, J.; Cao, Y.; et al. Research on broad learning systems based on dynamic sparse training. Exp. Technol. Manag. 2024, 41, 53–60.

  • 57.

    Zhang, Y.; Dai, Y.; Ke, S.; et al. Generalized sparse and outlier-robust broad learning systems for multi-dimensional output problems. Inf. Sci. 2024, 677, 25.

  • 58.

    Elisseeff, A.E.; Weston, J. A kernel method for multi-labelled classification. Neural Inf. Process. Syst. 2001, 14.

  • 59.

    Takeda, H.; Farsiu, S.; Milanfar, P. Kernel Regression for Image Processing and Reconstruction. IEEE Trans. Image Process. 2007, 16, 349–366.

  • 60.

    Chen, W.; Yang, K.; Shi, Y.; et al. Kernel-based Class-specific Broad Learning System for software defect prediction. In Proceedings of the 2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Beijing, China, 10–12 December 2021; pp. 109–114.

  • 61.

    Chen, W.; Yang, K.; Zhang, W.; et al. Double-kernelized weighted broad learning system for imbalanced data. Neural Comput. Appl. 2022, 34, 19923–19936.

  • 62.

    Chen, W.; Yang, K.; Yu, Z.; et al. Double-kernel based class-specific broad learning system for multiclass imbalance learning. Knowl.-Based Syst. 2022, 253, 109535.

  • 63.

    Lanckriet, G.R.G.; Cristianini, N.; Bartlett, P.L.; et al. Learning the Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res. 2002, 5, 27–72.

  • 64.

    Liu, Z.; Chen, C.P.; Zhang, T.; et al. Multi-kernel broad learning systems based on random features: A novel expansion for nonlinear feature nodes. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 193–197.

  • 65.

    Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828.

  • 66.

    Jin, J.; Geng, B.; Li, Y.; et al. Flexible Label-Induced Manifold Broad Learning System for Multiclass Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 16076–16090.

  • 67.

    Chu, Y.; Lin, H.; Yang, L.; et al. Hyperspectral image classification based on discriminative locality preserving broad learning system. Knowl.-Based Syst. 2020, 206, 106319.

  • 68.

    Lei, C.; Chen, C.L.P.; Zhang, T. AM-ConvBLS: Adaptive Manifold Convolutional Broad Learning System for Cross-Session and Cross-Subject Emotion Recognition. IEEE Trans. Affect. Comput. 2025, 16, 2788–2802.

  • 69.

    Min, H.; Shoubo, F.; Philip, C.C.L.; et al. Structured Manifold Broad Learning System: A Manifold Perspective for Large-Scale Chaotic Time Series Analysis and Prediction. IEEE Trans. Knowl. Data Eng. 2018, 31, 1809–1821.

  • 70.

    Feng, S.; Ren, W.; Han, M.; et al. Robust manifold broad learning system for large-scale noisy chaotic time series prediction: A perturbation perspective. Neural Netw. 2019, 117, 179–190.

  • 71.

    Zhao, H.; Zheng, J.; Deng, W.; et al. Semi-Supervised Broad Learning System Based on Manifold Regularization and Broad Network. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 983–994.

  • 72.

    Liu, X.; Qiu, T.; Chen, C.; et al. An Incremental Broad Learning Approach for Semi-Supervised Classification. In Proceedings of the 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, 5–8 August 2019.

  • 73.

    Zhang, X.; Nebot, A. Semi-Supervised Dual-Manifold Regularized Fuzzy Broad Learning for ICU Admission Prediction in Post-COVID Transplant Recipients. In Proceedings of the 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Yokohama, Japan, 30 June 2024–5 July 2024.

  • 74.

    Kong, Y.; Cheng, Y.; Chen, C.L.P.; et al. Hyperspectral Image Clustering Based on Unsupervised Broad Learning. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1741–1745.

  • 75.

    Dong, X.; Zhiwen, Y.U.; Cao, W.; et al. A survey on ensemble learning. Front. Comput. Sci. 2019, 14, 241–258.

  • 76.

    Yicheng, Y.;Wei, G.; Liwen,W. Broad learning system based on ensemble learning. In Proceedings of the 2021 International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA), Xi’an, China, 28–30 May 2021; pp. 62–67.

  • 77.

    Wu, C.; Qiu, T.; Zhang, C.; et al. Ensemble strategy utilizing a broad learning system for indoor fingerprint localization. IEEE Internet Things J. 2021, 9, 3011–3022.

  • 78.

    Fan, X.N.; Zhang, S.W. LPI-BLS: Predicting lncRNA–protein interactions with a broad learning system-based stacked ensemble classifier. Neurocomputing 2019, 370, 88–93.

  • 79.

    Zhao, B.; Yang, D.; Karimi, H.R.; et al. Filter-wrapper combined feature selection and adaboost-weighted broad learning system for transformer fault diagnosis under imbalanced samples. Neurocomputing 2023, 560, 1.1–1.12.

  • 80.

    Lin, M.; Yang, K.; Yu, Z.; et al. Hybrid Ensemble Broad Learning System for Network Intrusion Detection. IEEE Trans. Ind. Inform. 2024, 20, 5622–5633.

  • 81.

    Gao, Y.; Miao, H.; Chen, J.; et al. Explosive Cyber Security Threats During COVID-19 Pandemic and a Novel Tree-Based Broad Learning System to Overcome. IEEE Trans. Intell. Transp. Syst. 2022, 25, 786–795.

  • 82.

    Xie, R.; Wang, S. Downsizing and enhancing broad learning systems by feature augmentation and residuals boosting. Complex Intell. Syst. 2020, 6, 411–429.

  • 83.

    Xie, R.; Vong, C.M.; Chen, C.P.; et al. Dynamic Network Structure: Doubly Stacking Broad Learning Systems with Residuals and Simpler Linear Model Transmission. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 1378–1395.

  • 84.

    Liu, Z.; Chen, C.P.; Feng, S.; et al. Stacked broad learning system: From incremental flatted structure to deep model. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 51, 209–222.

Share this article:
How to Cite
Yun, F.; Yu, Z.; Yang, K. Broad Learning System in DataMining andMachine Learning. Data Mining and Machine Learning 2025, 1 (1), 100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.