- 1.
Altunkaynak, F.; Çavuşoğlu, K.; Yalçin, E. Detection of heavy metal contamination in Batlama Stream (Turkiye) and the potential toxicity profile. Sci. Rep. 2023, 13, 11727. https://doi.org/10.1038/s41598-023-39050-4.
- 2.
Kilic, Z. Water pollution: Causes, negative effects and prevention methods. İstanbul Sabahattin Zaim Üniversitesi Fen Bilim. Enstitüsü Derg. 2021, 3, 129–132.
- 3.
Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, 100, 6–19.
- 4.
Antoniadis, V.; Shaheen, S.M.; Levizou, E.; et al. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?-A review. Environ. Int. 2019, 127, 819–847.
- 5.
Mukherjee, I.; Singh, U.K.; Patra, P.K. Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India. Chemosphere 2019, 233, 164–173.
- 6.
Wallis, I.; Prommer, H.; Berg, M.; et al. The river–groundwater interface as a hotspot for arsenic release. Nat. Geosci. 2020, 13, 288–295.
- 7.
Obinna, I.B.; Ebere, E.C. A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Anal. Methods Environ. Chem. J. 2019, 2, 5–38.
- 8.
Hembrom, S.; Singh, B.; Gupta, S.K.; et al. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: A global perspective. Contemp. Environ. Issues Chall. Era Clim. Change 2020, 2020, 33–63.
- 9.
Okpara, E.C.; Fayemi, O.E.; Sherif, E.-S.M.; et al. Electrochemical evaluation of Cd2+ and Hg2+ ions in water using ZnO/Cu2ONPs/PANI modified SPCE electrode. Sens. Bio-Sens. Res. 2022, 35, 100476.
- 10.
Lata, S.; Ansari, N.G. Analytical Techniques for Heavy Metal Analysis. In Heavy Metal Contamination in the Environment; CRC Press: Boca Raton, FL, USA, 2024; pp. 180–202.
- 11.
Workman, J., Jr. Exploring the Spectrum of Analytical Techniques for Material Characterization. Spectroscopy 2023, 38, 6–13.
- 12.
Okpara, E.C.; Fayemi, O.E.; Wojuola, O.B.; et al. Electrochemical detection of selected heavy metals in water: A case study of African experiences. RSC Adv. 2022, 12, 26319–26361.
- 13.
Pasakon, P.; Kamsong, W.; Primpray, V.; et al. Simultaneous electrochemical sensing of Cd2+ and Pb2+ using screen-printed ionic liquid/graphene electrodes. Int. J. Environ. Anal. Chem. 2024, 104, 9804–9819.
- 14.
Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51.
- 15.
Brownson, D.A.; Banks, C.E. Graphene electrochemistry: An overview of potential applications. Analyst 2010, 135, 2768–2778.
- 16.
Pumera, M. Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec. 2009, 9, 211–223.
- 17.
Brownson, D.A.; Kelly, P.J.; Banks, C.E. In situ electrochemical characterisation of graphene and various carbon-based electrode materials: An internal standard approach. RSC Adv. 2015, 5, 37281–37286.
- 18.
McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687.
- 19.
Aragay, G.; Pons, J.; Merkoçi, A. Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. J. Mater. Chem. 2011, 21, 4326–4331.
- 20.
Somerset, V.; Iwuoha, E.; Hernandez, L. Stripping voltammetric measurement of trace metal ions at screen-printed carbon and carbon paste electrodes. Procedia Chem. 2009, 1, 1279–1282.
- 21.
Somerset, V.; Leaner, J.; Mason, R.; et al. Development and application of a poly (2,2′-dithiodianiline)(PDTDA)-coated screen-printed carbon electrode in inorganic mercury determination. Electrochim. Acta 2010, 55, 4240–4246.
- 22.
Ferrari, A.G.-M.; Carrington, P.; Rowley-Neale, S.J.; et al. Recent advances in portable heavy metal electrochemical sensing platforms. Environ. Sci. Water Res. Technol. 2020, 6, 2676–2690.
- 23.
Lu, Y.; Ganguli, R.; Drewien, C.A.; et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 1997, 389, 364–368.
- 24.
Petit-Dominguez, M.D.; Shen, H.; Heineman, W.R.; et al. Electrochemical behavior of graphite electrodes modified by spin-coating with sol−gel-entrapped ionomers. Anal. Chem. 1997, 69, 703–710.
- 25.
Kim, Y.-R.; Bong, S.; Kang, Y.-J.; et al. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010, 25, 2366–2369.
- 26.
Lu, Y.; Liang, X.; Niyungeko, C.; et al. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338.
- 27.
Somasundrum, M.; Bannister, J.V. Amperometric determination of copper using screen-printed electrodes. Sens. Actuators B Chem. 1993, 15, 203–208.
- 28.
Kadara, R.O.; Jenkinson, N.; Banks, C.E. Disposable bismuth oxide screen printed electrodes for the high throughput screening of heavy metals. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2009, 21, 2410–2414.
- 29.
Palchetti, I.; Upjohn, C.; Turner, A.; et al. Disposable screen-printed electrodes (SPE) mercury-free for lead detection. Anal. Lett. 2000, 33, 1231–1246.
- 30.
Kadara, R.O.; Tothill, I.E. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples. Anal. Chim. Acta 2008, 623, 76–81.
- 31.
Alagumalai, K.; Sivakumar, M.; Kim, S.-C.; et al. AgBiS2 embedded activated graphene nanolayer for sensing azathioprine in biospecimens. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133243.
- 32.
Hamad, A.; Khashan, K.S.; Hadi, A. Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4811–4828.
- 33.
Gan, X.; Liu, T.; Zhong, J.; et al. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. ChemBioChem 2004, 5, 1686–1691.
- 34.
Zahran, M.; Khalifa, Z.; Zahran, M.A.-H.; et al. Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: A review. Mater. Adv. 2021, 2, 7350–7365.
- 35.
Ivanišević, I. The role of silver nanoparticles in electrochemical sensors for aquatic environmental analysis. Sensors 2023, 23, 3692.
- 36.
Wang, J. Stripping analysis at bismuth electrodes: A review. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2005, 17, 1341–1346.
- 37.
Wang, J.; Lu, J.; Hocevar, S.B.; et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 2000, 72, 3218–3222.
- 38.
Chang, J.; Li, Y.; Duan, F.; et al. Selective removal of chloride ions by bismuth electrode in capacitive deionization. Sep. Purif. Technol. 2020, 240, 116600.
- 39.
Kokkinos, C.; Economou, A. Stripping analysis at bismuth-based electrodes. Curr. Anal. Chem. 2008, 4, 183–190.
- 40.
Krueger, J.; Winkler, P.; Luderitz, E.; et al. Bismuth Alloys and Bismuth Compounds. Ullman Encycl. Ind. Technol. 1978, 3.
- 41.
Miao, Y.; Wang, Z.; Wei, Z.; et al. Patterned growth of AgBiS 2 nanostructures on arbitrary substrates for broadband and eco-friendly optoelectronic sensing. Nanoscale 2024, 16, 7409–7418.
- 42.
Hu, L.; Patterson, R.J.; Zhang, Z.; et al. Enhanced optoelectronic performance in AgBiS 2 nanocrystals obtained via an improved amine-based synthesis route. J. Mater. Chem. C 2018, 6, 731–737.
- 43.
Senina, A.; Prudnikau, A.; Wrzesińska-Lashkova, A.; et al. Cation exchange synthesis of AgBiS 2 quantum dots for highly efficient solar cells. Nanoscale 2024, 16, 9325–9334.
- 44.
Gopi, P.K.; Sanjayan, C.G.; Akhil, S.; et al. Silver bismuth sulphide (AgBiS2)-MXene composite as high-performance electrochemical sensing platform for sensitive detection of pollutant 4-nitrophenol. Electrochim. Acta 2024, 498, 144616. https://doi.org/10.1016/j.electacta.2024.144616.
- 45.
Li, R.; Wang, C.; Wang, Y.; et al. A novel photoelectrochemical sensor based on flower-like SnS2, sea urchin-like AgBiS2 and graphene oxide nanocomposite film for efficient and sensitive detection of acetaminophen in lake water samples. Anal. Chim. Acta 2023, 1239, 340681. https://doi.org/10.1016/j.aca.2022.340681.
- 46.
Ajiboye, T.O.; Oyewo, O.A.; Marzouki, R.; et al. Synthesis of AgBiS2/gC3N4 and its application in the photocatalytic reduction of Pb(II) in the matrix of methyl orange, crystal violet, and methylene blue dyes. Ceram. Int. 2023, 49, 6149–6163. https://doi.org/10.1016/j.ceramint.2022.10.187.
- 47.
Olowu, R.A.; Ndangili, P.M.; Baleg, A.A.; et al. Spectroelectrochemical dynamics of dendritic poly (propylene imine)-polythiophene star copolymer aptameric 17β-estradiol biosensor. Int. J. Electrochem. Sci. 2011, 6, 1686–1708.
- 48.
Honeychurch, K.C.; Hart, J.P.; Cowell, D.C. Voltammetric Behavior and Trace Determination of Lead at a Mercury‐Free Screen‐Printed Carbon Electrode. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2000, 12, 171–177.
- 49.
Okpara, E.C.; Nde, S.C.; Fayemi, O.E.; et al. Electrochemical characterization and detection of lead in water using SPCE modified with BiONPs/PANI. Nanomaterials 2021, 11, 1294.
- 50.
Mariappan, C.; Roling, B. Investigation of bioglass–electrode interfaces after thermal poling. Solid State Ion. 2008, 179, 671–677.
- 51.
Rani, G.; Rajesh Banu, J.; Yogalakshmi, K.N. Chapter 18-Electrode modification and its application in microbial electrolysis cell. In Scaling Up of Microbial Electrochemical Systems; Jadhav, D.A., Pandit, S., Gajalakshmi, S., et al., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 339–357.
- 52.
Macdonald, J.R.; Johnson, W.B.; Raistrick, I.; et al. Impedance Spectroscopy: Theory, Experiment, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018.
- 53.
Laschuk, N.O.; Easton, E.B.; Zenkina, O.V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 2021, 11, 27925–27936.
- 54.
Pérez-Ràfols, C.; Bastos-Arrieta, J.; Serrano, N.; et al. Ag Nanoparticles Drop-Casting Modification of Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Cu(II) and Pb(II). Sensors 2017, 17, 1458.
- 55.
Guyett, P.C.; Chew, D.; Azevedo, V.; et al. Optimizing SEM-EDX for fast, high-quality and non-destructive elemental analysis of glass. J. Anal. At. Spectrom. 2024, 39, 2565–2579.
- 56.
Shirley, B.; Jarochowska, E. Chemical characterisation is rough: The impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals. Facies 2022, 68, 7. https://doi.org/10.1007/s10347-022-00645-4.
- 57.
Yedra, L.; Kumar, C.S.; Pshenova, A.; et al. A correlative method to quantitatively image trace concentrations of elements by combined SIMS-EDX analysis. J. Anal. At. Spectrom. 2021, 36, 56–63.
- 58.
Lifshin, E.; Gauvin, R. Precision and detection limits for EDS analysis in the SEM. Microsc. Today 2003, 11, 46–49.
- 59.
Ajiboye, T.O.; Mafolasire, A.A.; Lawrence, S.; et al. Composite and Pristine Silver Bismuth Sulphide: Synthesis and Up-to-Date Applications. J. Inorg. Organomet. Polym. Mater. 2024, 34, 433–457.
- 60.
Kreider-Mueller, A.; Quinlivan, P.J.; Owen, J.S.; et al. Tris (2-mercaptoimidazolyl) hydroborato cadmium thiolate complexes,[TmBut] CdSAr: Thiolate exchange at cadmium in a sulfur-rich coordination environment. Inorg. Chem. 2017, 56, 4643–4653.
- 61.
Semenov, V.N.; Naumov, A.V.; Samofalova, T.V.; et al. The deposition of layers of sulfides of cadmium and lead from thiosulfate-tiourea complexes and their properties. Kondens. Sredy I Mezhfaznye Granitsy = Condens. Matter Interphases 2019, 21, 240–248.
- 62.
Saha, D.; Barakat, S.; Van Bramer, S.E.; et al. Noncompetitive and competitive adsorption of heavy metals in sulfur-functionalized ordered mesoporous carbon. ACS Appl. Mater. Interfaces 2016, 8, 34132–34142.
- 63.
Yang, Q.; Sun, X.; Sun, Y.; et al. Bismuth metal–organic framework/carbon nanosphere composites for ultrasensitive simultaneous electrochemical detection of lead and cadmium. ACS Appl. Nano Mater. 2023, 6, 7901–7909.
- 64.
Wu, Y.; Li, N.B.; Luo, H.Q. Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly (p-aminobenzene sulfonic acid) film electrode. Sens. Actuators B Chem. 2008, 133, 677–681.
- 65.
Li, Z.; Han, H.; Chao, L.; et al. Recent Advances of AgBiS2: Synthesis Methods, Photovoltaic Device, Photodetector, and Sensors. Electromagn. Sci. 2025, 3, 0090451–1–0090451-19.
- 66.
Ciblak, A.; Mao, X.; Padilla, I.; et al. Electrode effects on temporal changes in electrolyte pH and redox potential for water treatment. J. Environ. Sci. Health Part A 2012, 47, 718–726.
- 67.
Li, L.-Z.; Yu, S.-Y.; Peijnenburg, W.J.; et al. Determining the fluxes of ions (Pb2+, Cu2+ and Cd2+) at the root surface of wetland plants using the scanning ion-selective electrode technique. Plant Soil 2017, 414, 1–12.
- 68.
Yang, D.; Wang, L.; Chen, Z.; et al. Anodic stripping voltammetric determination of traces of Pb (II) and Cd (II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim. Acta 2014, 181, 1199–1206.
- 69.
Laschi, S.; Palchetti, I.; Mascini, M. Gold-based screen-printed sensor for detection of trace lead. Sens. Actuators B Chem. 2006, 114, 460–465.
- 70.
Bernalte, E.; Arévalo, S.; Pérez-Taborda, J.; et al. Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sens. Actuators B Chem. 2020, 307, 127620.
- 71.
Bernalte, E.; Sánchez, C.M.; Gil, E.P. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal. Chim. Acta 2011, 689, 60–64.
- 72.
Inman, D.; Sethi, R.; Spencer, R. The effects of complex ion formation and ionic adsorption on electrode reactions involving metals and metal ions in fused salts. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 137–147.
- 73.
Abbas, A.; Amin, H.M. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem. J. 2022, 175, 107166.
- 74.
Furey, A.; Moriarty, M.; Bane, V.; et al. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 2013, 115, 104–122.
- 75.
Lu, M.; Deng, Y.; Luo, Y.; et al. Graphene aerogel–metal–organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal. Chem. 2018, 91, 888–895.
- 76.
Awual, M.R.; Khraisheh, M.; Alharthi, N.H.; et al. Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem. Eng. J. 2018, 343, 118–127. https://doi.org/10.1016/j.cej.2018.02.116.
- 77.
Kim, H.; Boulogne, F.; Um, E.; et al. Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 2016, 116, 124501.
- 78.
Papadas, I.T.; Savva, A.; Ioakeimidis, A.; et al. Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells. Mater. Today Energy 2018, 8, 57–64.
- 79.
Sochr, J.; Machková, M.; Machynak, L.; et al. Heavy metals determination using various in situ bismuth film modified carbon-based electrodes. Acta Chim. Slovaca 2016, 9, 28.
- 80.
Xie, T.; Zhang, M.; Chen, P.; et al. A facile molecularly imprinted electrochemical sensor based on graphene: Application to the selective determination of thiamethoxam in grain. Rsc Adv. 2017, 7, 38884–38894.
- 81.
Fumagalli, D.; Aidli, W.; Falciola, L.; et al. Bimodal (Photo) electrochemical Sensor for Cetirizine Detection. Electroanalysis 2025, 37, e12018.
- 82.
Maity, S.; Deshmukh, S.; Roy, S.S.; et al. Selenium‐doped Graphite for Electrochemical Sensing and Adsorption of Hg (II) and Cd (II) Ions. ChemElectroChem 2023, 10, e202201044.
- 83.
Blaise, N.; Gomdje Valéry, H.; Maallah, R.; O et al. Simultaneous electrochemical detection of Pb and Cd by carbon paste electrodes modified by activated clay. J. Anal. Methods Chem. 2022, 2022, 6900839.
- 84.
Zhang, W.; Chen, J.; Xiao, G.; et al. A hydrogel electrochemical electrode for simultaneous measurement of cadmium ions and lead ions. J. Electroanal. Chem. 2021, 901, 115756.
- 85.
Liu, L.; Yu, C.; Zhang, X.; et al. Carbon paste electrode modified with bismuth oxychloride as a sensor for the determination of Pb2+ and Cd2+. Int. J. Electrochem. Sci. 2019, 14, 4469–4482.
- 86.
Bindewald, E.H.; Schibelbain, A.F.; Papi, M.A.; et al. Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Mater. Sci. Eng. C 2017, 79, 262–269.
- 87.
Koirala, K.; Santos, J.H.; Tan, A.L.; et al. Chemically modified carbon paste electrode for the detection of lead, cadmium and zinc ions. Sens. Rev. 2016, 36, 339–346.
- 88.
Shalaby, E.; Beltagi, A.; Hathoot, A.; et al. Simultaneous voltammetric sensing of Zn2+, Cd2+, and Pb2+ using an electrodeposited Bi–Sb nanocomposite modified carbon paste electrode. RSC Adv. 2023, 13, 7118–7128.