- 1.
Asghar, H.; Saeed, M.; Mirsafi, F.S.; et al. Zinc Oxide-Graphitic Carbon Nitride Composites: Synthesis, Properties, and Application Scopes in Environmental Remediations. Small 2025, 21, e09637.
- 2.
Li, S.; Zhang, T.; Zheng, H.; et al. Efficient photo-Fenton degradation of water pollutants via peracetic acid activation over sulfur vacancies-rich metal sulfides/MXenes. Appl. Cataly. B-Environ. Energy 2025, 366, 125000.
- 3.
Lv, M.; Liu, Y.; Wang, M.; et al. Transformative Forces: The Role of Gut Microbiota in Processing Environmental Pollutants. Environ. Sci. Technol. 2025, 59, 15575–15593.
- 4.
Gao, X.; Zheng, X.; Wang, X.; et al. Environmental pollutant exposure and adverse neurodevelopmental outcomes: An umbrella review and evidence grading of meta-analyses. J. Hazard. Mater. 2025, 491, 137832.
- 5.
Pirvu, F.; Pascu, L.F.; Paun, I.; et al. Sorption of PAHs onto microplastics in Romanian surface waters and sediments: Environmental toxicity and human health risk with emphasis on pediatric exposure. Water Res. 2025, 287, 124483.
- 6.
Yu, X.; Tang, L.; Yan, R.; et al. Quantifying PFAS contamination and environmental risk in municipal solid waste landfill refuse: Implications for landfill reuse. Water Res. 2025, 283, 123881.
- 7.
Wang, H.; Zhang, S.; Lin, Z.; et al. Occurrence, removal and ecological risk assessment of antibiotics in rural domestic wastewater treatment systems in the Beijing-Tianjin-Hebei region. J. Hazard. Mater. 2025, 495, 139127.
- 8.
Cui, P.; Schito, G.; Cui, Q. VOC emissions from asphalt pavement and health risks to construction workers. J. Clean. Prod. 2020, 244, 118757.
- 9.
Liu, J.; Qi, W.; Xu, M.; et al. Piezocatalytic Techniques in Environmental Remediation. Angew. Chem. Int. Ed. 2023, 62, e202213927.
- 10.
Zadehnazari, A.; Khosropour, A.; Zarei, A.; et al. Viologen-Derived Covalent Organic Frameworks: Advancing PFAS Removal Technology with High Adsorption Capacity. Small 2024, 20, 2405176.
- 11.
Xiang, J.; Zhou, Z.; Liu, Z.; et al. Constructing simplified microbial consortia that couple lactic acid and ethanol utilization to highly produce caproic acid from liquor-making wastewater. Water Res. 2025, 284, 123973.
- 12.
Dicataldo, G.; Desmond, P.; Al-Maas, M.; et al. Feasibility and application of membrane aerated biofilm reactors for industrial wastewater treatment. Water Res. 2025, 280, 123523.
- 13.
Wang, C.; Qi, W.-K.; Zhang, S.-J.; et al. Innovation for continuous aerobic granular sludge process in actual municipal sewage treatment: Self-circulating up-flow fluidized bed process. Water Res. 2024, 260, 121862.
- 14.
Wang, S.; Song, W.; Liu, E.; et al. Efficient, facile and recyclable coating strategy to improve heavy metals removal by UF membrane in drinking water purification. Sep. Purif. Technol. 2025, 363, 131995.
- 15.
Wang, X.; Guo, S.; Chen, W.; et al. Fe2O3-Kao@g-CN activated peroxymonosulfate remediation of bensulfuron methyl-polluted water and soil: Detoxification, soil properties and crop growth. Chem. Eng. J. 2024, 487, 150745.
- 16.
Kasula, M.; Ortbal, S.; Kebede, M.M.; et al. Evaluating Biofiltration Pretreatment and NOM-PFAS Dynamics in PFAS Removal by Nanofiltration Membranes. ACS EST Water 2025, 5, 3628–3642.
- 17.
Hou, L.; Hu, K.; Huang, F.; et al. Advances in immobilized microbial technology and its application to wastewater treatment: A review. Bioresour. Technol. 2024, 413, 131518.
- 18.
Su, H.; Yin, H.; Wang, R.; et al. Atomic-level coordination structures meet graphitic carbon nitride (g-C3N4) for photocatalysis: Energy conversion and environmental remediation. Appl. Catal. B-Environ. Energy 2024, 348, 123683.
- 19.
Wakjira, T.L.; Gemta, A.B.; Kassahun, G.B.; et al. Bismuth-Based Z-Scheme Heterojunction Photocatalysts for Remediation of Contaminated Water. ACS Omega 2024, 9, 8709–8729.
- 20.
Wang, W.; Zhang, W.; Deng, C.; et al. Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angew. Chem. Int. Ed. 2024, 63, e202317969.
- 21.
Xu, D.; Wang, H.; Zhang, K.; et al. Photocatalytic Waste Polystyrene Plastic Conversion: Reaction Mechanism and Catalyst Design. Environ. Sci. Technol. 2025, 59, 16112–16129.
- 22.
Mani, S.S.; Rajendran, S.; Mathew, T.; et al. A review on the recent advances in the design and structure–activity relationship of TiO2-based photocatalysts for solar hydrogen production. Energy Adv. 2024, 3, 1472–1504.
- 23.
Tian, T.; Lu, D.; Zhao, B.; et al. Exploring the intrinsic relationship between defects in g-C3N4 and the enhancement of photogenerated carrier dynamics and photocatalytic performance. J. Alloys Compd. 2025, 1010, 178135.
- 24.
Zheng, X.; Song, Y.; Gao, Q.; et al. Controllable-Photocorrosion Balance Endows ZnCdS Stable Photocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2025, 35, 2506159.
- 25.
Zhang, X.; Bo, C.; Cao, S.; et al. Stability improvement of a Pt/TiO2 photocatalyst during photocatalytic pure water splitting. J. Mater. Chem. A 2022, 10, 24381–24387.
- 26.
Masood, H.; Toe, C.Y.; Teoh, W.Y.; et al. Machine Learning for Accelerated Discovery of Solar Photocatalysts. ACS Catal. 2019, 9, 11774–11787.
- 27.
Shiekhmohammadi, A.; Alamgholiloo, H.; Asgari, E.; et al. A plasmonic S-scheme Ag/ZrO2/TCN photocatalyst for enhancing interfacial charge transfer: Insights to machine learning models and mechanism for photodegradation. Colloids Surf. A 2025, 717, 136858.
- 28.
Wayo, D.D.K.; Goliatt, L.; Ganji, M.D.; et al. DFT and hybrid classical–quantum machine learning integration for photocatalyst discovery and hydrogen production. Rev. Chem. Eng. 2025, 41, 741–774.
- 29.
Tunala, S.; Zhai, S.; Wu, F.; et al. Machine learning in photocatalysis: Accelerating design, understanding, and environmental applications. Sci. China Chem. 2025, 68, 3415–3428.
- 30.
Li, X.; Maffettone, P.M.; Che, Y.; et al. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chem. Sci. 2021, 12, 10742–10754.
- 31.
Mai, H.; Le, T.C.; Chen, D.; et al. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem. Rev. 2022, 122, 13478–13515.
- 32.
Wang, S.; Mo, P.; Li, D.; et al. Intelligent Algorithms Enable Photocatalyst Design and Performance Prediction. Catalysts 2024, 14, 217.
- 33.
Xiao, Y.; Choudhuri, K.; Thanetchaiyakup, A.; et al. Machine-Learning-Assisted Discovery of Mechanosynthesized Lead-Free Metal Halide Perovskites for the Oxidative Photocatalytic Cleavage of Alkenes. Adv. Sci. 2024, 11, 2309714.
- 34.
Pang, Y.; Li, P.; Ma, X.; et al. Metal-doped carbon nitride: An all-in-one photocatalyst. EES Catal. 2023, 1, 810–831.
- 35.
Wang, L.; Kong, Y.; Fang, Y.; et al. A Ga Doped NiTiO3 Photocatalyst for Overall Water Splitting under Visible Light Illumination. Adv. Funct. Mater. 2022, 32, 2208101.
- 36.
Tu, B.; Hao, J.; Wang, F.; et al. Element doping adjusted the built-in electric field at the TiO2/CdS interface to enhance the photocatalytic reduction activity of Cr(VI). Chem. Eng. J. 2023, 456, 141103.
- 37.
Ye, L.; Jin, X.; Liu, C.; et al. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B-Environ. Energy 2016, 187, 281–290.
- 38.
Bai, Y.; Wilbraham, L.; Slater, B.J.; et al. Accelerated Discovery of Organic Polymer Photocatalysts for Hydrogen Evolution from Water through the Integration of Experiment and Theory. J. Am. Chem. Soc. 2019, 141, 9063–9071.
- 39.
Wang, Y.; Kang, Y.; Zhu, H.; et al. Perovskite Oxynitride Solid Solutions of LaTaON2-CaTaO2N with Greatly Enhanced Photogenerated Charge Separation for Solar-Driven Overall Water Splitting. Adv. Sci. 2021, 8, 2003343.
- 40.
Xiao, M.; Wang, Z.; Lyu, M.; et al. Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Adv. Mater. 2019, 31, 1801369.
- 41.
Wang, Z.; Gu, Y.; Zheng, L.; et al. Machine Learning Guided Dopant Selection for Metal Oxide-Based Photoelectrochemical Water Splitting: The Case Study of Fe2O3 and CuO. Adv. Mater. 2022, 34, 2106776.
- 42.
Nishimura, T.; Kumabe, Y.; Harashima, Y.; et al. Machine-Learning-Driven Photocurrent Prediction in Multielement-Doped Hematite Photoelectrodes. ACS Catal. 2025, 15, 11993–12004.
- 43.
Zhang, L.; Chen, G.X.; Wang, Z.L.; et al. Automated machine learning guides discovery of ABO3-type oxides for effective water splitting photocatalysis. Chem. Phys. Lett. 2025, 869, 142034.
- 44.
Sohrabi, S.; Rahimi, P.; Khedri, M.; et al. Evaluation of machine learning and molecular dynamics models for photocatalytic water decontamination. Process Saf. Environ. Prot. 2025, 195, 106780.
- 45.
Mai, H.; Li, X.; Le, T.C.; et al. Rapid Design of Efficient Mn3O4-Based Photocatalysts by Machine Learning and Density Functional Theory Calculations. Adv. Energy Sustain. Res. 2025, 6, 2400397.
- 46.
Wang, H.; You, C. Photocatalytic oxidation of SO2 on TiO2 and the catalyst deactivation: A kinetic study. Chem. Eng. J. 2018, 350, 268–277.
- 47.
Haselmann, G.M.; Eder, D. Early-Stage Deactivation of Platinum-Loaded TiO2 Using In Situ Photodeposition during Photocatalytic Hydrogen Evolution. ACS Catal. 2017, 7, 4668–4675.
- 48.
Weon, S.; Choi, W. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. Environ. Sci. Technol. 2016, 50, 2556–2563.
- 49.
Allam, O.; Maghsoodi, M.; Jang, S.S.; et al. Unveiling Competitive Adsorption in TiO2 Photocatalysis through Machine-Learning-Accelerated Molecular Dynamics, DFT, and Experimental Methods. ACS Appl. Mater. Interfaces 2024, 16, 36215–36223.
- 50.
Wu, C.H.; Wu, C.F.; Shr, J.F.; et al. Parameter settings on preparation of composite photocatalysts for enhancement of adsorption/photocatalysis hybrid capability. Sep. Purif. Technol. 2008, 61, 258–265.
- 51.
Fu, X.; Huang, D.; Qin, Y.; et al. Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6. Appl. Catal. B 2014, 148, 532–542.
- 52.
Lin, X.; Du, X.; Wu, S.; et al. Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions. Nat. Commun. 2024, 15, 8169.
- 53.
Li, R. Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin. J. Catal. 2017, 38, 5–12.
- 54.
Wang, Z.; Huang, X.; Wang, X. Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catal. Today 2019, 335, 31–38.
- 55.
Yao, T.; An, X.; Han, H.; et al. Photoelectrocatalytic Materials for Solar Water Splitting. Adv. Energy Mater. 2018, 8, 1800210.
- 56.
Huang, M.; Wang, S.; Zhu, H. A comprehensive machine learning strategy for designing high-performance photoanode catalysts. J. Mater. Chem. A 2023, 11, 21619–21627.
- 57.
Zhang, L.; Zhang, J.; Yu, J.; et al. Charge-transfer dynamics in S-scheme photocatalyst. Nat. Rev. Chem. 2025, 9, 328–342.
- 58.
Sudrajat, H.; Nobatova, M. Heterojunction photocatalysts: Where are they headed? RSC Appl. Interfaces 2025, 2, 599–619.
- 59.
Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.
- 60.
Zhou, H.; Sheng, X.; Ding, Z.; et al. Liquid–Liquid–Solid Triphase Interface Microenvironment Mediates Efficient Photocatalysis. ACS Catal. 2022, 12, 13690–13696.
- 61.
Pan, S.; Lu, D.; Gan, H.; et al. Long-range hydrophobic force enhanced interfacial photocatalysis for the submerged surface anti-biofouling. Water Res. 2023, 243, 120383.
- 62.
Zeng, Z.; Tan, L.; Ye, F.; et al. Carbon nitride with water soluble ability: Enhanced oxygen species interphase mass transfer for homogenous photocatalytic water purification. Appl. Surf. Sci. 2024, 652, 159352.
- 63.
Li, L.; Xu, L.; Hu, Z.; et al. Enhanced Mass Transfer of Oxygen through a Gas–Liquid–Solid Interface for Photocatalytic Hydrogen Peroxide Production. Adv. Funct. Mater. 2021, 31, 2106120.
- 64.
Zhang, G.; Li, X.; Chen, D.; et al. Internal Electric Field and Adsorption Effect Synergistically Boost Carbon Dioxide Conversion on Cadmium Sulfide@Covalent Triazine Frameworks Core–Shell Photocatalyst. Adv. Funct. Mater. 2023, 33, 2308553.
- 65.
Yu, L.; Wang, Q.; Zhuang, C.; et al. Periodic Frustrated Lewis Pairs on Bimetallic Oxide Semiconductors for CO2 Adsorption and Photocatalytic Conversion. ACS Nano 2025, 19, 7239–7252.
- 66.
El-Alami, W.; Sousa, D.G.; González, J.D.; et al. TiO2 and F-TiO2 photocatalytic deactivation in gas phase. Chem. Phys. Lett. 2017, 684, 164–170.
- 67.
Yu, G.; Wang, N. Gas-Liquid-Solid interface enhanced photocatalytic reaction in a microfluidic reactor for water treatment. Appl. Catal. A 2020, 591, 117410.
- 68.
Zhao, Y.; Guo, J.; Yang, B.; et, al. A multilayered Co–Fe MOF/GO 3D evaporator for efficient solar-driven water generation and wastewater purification. J. Mater. Chem. A 2025, 13, 27314–27325.
- 69.
Wang, W.; Tian, Z.; Huan, X.; et al. Solar-Driven Interfacial Evaporation: Material Types, Structural Strategies, and Emerging Applications. Langmuir 2025, 41, 24097–24134.
- 70.
Song, Y.; Fang, S.; Xu, N.; et al. Solar-driven interfacial evaporation technologies for food, energy and water. Nat. Rev. Clean. Technol. 2025, 1, 55–74.
- 71.
Lv, B.; Dong, X.; Xu, Y.; et al. A self-sufficient catalytic nanofiber evaporator for solar-driven efficient water purification through in-situ hydrogen peroxide generation. Chem. Eng. J. 2024, 501, 157611.
- 72.
Sheng, X.; Liu, Z.; Zeng, R.; et al. Enhanced Photocatalytic Reaction at Air–Liquid–Solid Joint Interfaces. J. Am. Chem. Soc. 2017, 139, 12402–12405.
- 73.
Chen, R.; Li, J.; Wang, H.; et al. Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition. J. Mater. Chem. A 2021, 9, 20184–20210.
- 74.
Ma, H.; Wang, X.; Jin, R.; et al. Promote hydroxyl radical and key intermediates formation for deep toluene mineralization via unique electron transfer channel. J. Colloid Interface Sci. 2023, 630, 704–713.
- 75.
Li, Y.; Ouyang, S.; Xu, H.; et al. Constructing Solid–Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm. J. Am. Chem. Soc. 2016, 138, 13289–13297.
- 76.
Chen, Z.; Zhao, J.; Zhao, J.; et al. Frustrated Lewis pairs photocatalyst for visible light-driven reduction of CO to multi-carbon chemicals. Nanoscale 2019, 11, 20777–20784.
- 77.
Xu, C.; Yang, W.; Guo, Q.; et al. Photoinduced decomposition of acetaldehyde on a reduced TiO2(110) surface: Involvement of lattice oxygen. Phys. Chem. Chem. Phys. 2016, 18, 30982–30989.
- 78.
Lopez-Besora, J.; Pardal, C.; Isalgue, A.; et al. Exploring the Integration of a Novel Photocatalytic Air Purification Façade Component in Buildings. Buildings 2024, 14, 2481.
- 79.
Asadi, S.; Hassan, M.; Nadiri, A.; et al. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification. Environ. Sci. Pollut. Res. 2014, 21, 8847–8857.
- 80.
Li, W.; Yue, F.; Shi, M.; et al. Thermally assisted photocatalytic industrial flue gas CO2 conversion: 100% selective CO production via synergistic adsorption–conversion in NH2–MXene–MOF hierarchical interfaces. J. Mater. Chem. A 2025, 13, 33233–33244.
- 81.
Murgolo, S.; Franz, S.; Arab, H.; et al. Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Res. 2019, 164, 114920.
- 82.
Ding, R.; Yan, W.; Wu, Y.; et, al. Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Res. 2018, 143, 589–598.
- 83.
Liu, W.; Dong, Y.; Liu, J.; et al. Halloysite nanotube confined interface engineering enhanced catalytic oxidation of photo-Fenton reaction for aniline aerofloat degradation: Defective heterojunction for electron transfer regulation. Chem. Eng. J. 2023, 451, 138666.
- 84.
Liu, R.; Zheng, Z.; Spurgeon, J.; et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7, 2504–2517.
- 85.
Li, J.; Wei, J.; Sun, J.; et al. Building the bimetallic site of Co2Mo3O8/Co9S8 heterojunction via interface electronic reconfiguration to enhance peroxymonosulfate activation for singlet oxygen formation. Chem. Eng. J. 2025, 505, 159739.
- 86.
Kuddushi, M.; Deng, X.; Nayak, J.; et al. A Transparent, Tough and Self-Healable Biopolymeric Composites Hydrogel for Open Wound Management. ACS Appl. Bio Mater. 2023, 6, 3810–3822.
- 87.
Xu, B.B.; Zhou, M.; Ye, M.; et al. Cooperative Motion in Water–Methanol Clusters Controls the Reaction Rates of Heterogeneous Photocatalytic Reactions. J. Am. Chem. Soc. 2021, 143, 10940–10947.
- 88.
Mudhoo, A.; Bhatnagar, A.; Rantalankila, M.; et al. Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: A review. Chem. Eng. J. 2019, 360, 912–928.
- 89.
Fazey, F.M.; Ryan, P.G. Debris size and buoyancy influence the dispersal distance of stranded litter. Mar. Pollut. Bull. 2016, 110, 371–377.
- 90.
Barone, G.D.; Rodríguez-Seijo, A.; Parati, M.; et al. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. Environ. Sci. EcoTechnol. 2024, 20, 100407.
- 91.
Hu, C.; Tu, S.; Tian, N.; et al. Photocatalysis Enhanced by External Fields. Angew. Chem. Int. Ed. 2021, 60, 16309–16328.
- 92.
Li, X.; Wang, W.; Dong, F.; et al. Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catal. 2021, 11, 4739–4769.
- 93.
Zhu, Y.; Wang, H.; Wang, B.; et al. Solar thermoelectric field plus photocatalysis for efficient organic synthesis exemplified by toluene to benzoic acid. Appl. Catal. B-Environ. Energy 2016, 193, 151–159.
- 94.
Van Doorslaer, X.; Demeestere, K.; Heynderickx, P.M.; et al. Heterogeneous photocatalysis of moxifloxacin: Identification of degradation products and determination of residual antibacterial activity. Appl. Catal. B-Environ. Energy 2013, 138, 333–341.
- 95.
Zhang, Y.; Qi, M.Y.; Tang, Z.R.; et al. Photoredox-Catalyzed Plastic Waste Conversion: Nonselective Degradation versus Selective Synthesis. ACS Catal. 2023, 13, 3575–3590.
- 96.
Chen, W.; Li, X.; Wang, F.; et al. Nonepitaxial Gold-Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production. Small 2020, 16, 1902231.
- 97.
Wu, S.; Quan, X. Design Principles and Strategies of Photocatalytic H2O2 Production from O2 Reduction. ACS ES&T Eng. 2022, 2, 1068–1079.
- 98.
Xia, C.; Yuan, L.; Song, H.; et al. Spatial Specific Janus S-Scheme Photocatalyst with Enhanced H2O2 Production Performance. Small 2023, 19, 2300292.
- 99.
Lu, Y.; Dong, Y.; Liu, W.; et, al. Piezo-photocatalytic enhanced microplastic degradation on hetero-interpenetrated Fe1−xS/FeMoO4/ MoS2 by producing H2O2 and self-Fenton action. Chem. Eng. J. 2025, 508, 160935.
- 100.
Hu, C.; Huang, H.; Chen, F.; et al. Coupling Piezocatalysis and Photocatalysis in Bi4NbO8X (X = Cl, Br) Polar Single Crystals. Adv. Funct. Mater. 2020, 30, 1908168.
- 101.
Wang, R.; Xie, X.; Xu, C.; et al. Bi-piezoelectric effect assisted ZnO nanorods/PVDF-HFP spongy photocatalyst for enhanced performance on degrading organic pollutant. Chem. Eng. J. 2022, 439, 135787.
- 102.
Chen, R.; Wang, J.; Zhang, C.; et al. Purification and Value-Added Conversion of NOx under Ambient Conditions with Photo-/Electrocatalysis Technology. Environ. Sci. Technol. 2025, 59, 1013–1033.
- 103.
Singh, S.; Kapoor, S.; Singh, J.P. Synergistic Photocatalysis by α-MoO3 Nanostructures and SWCNT Nanocomposites for Efficient Cross-Linking and Oxidative Degradation of Polystyrene Nanoplastics. ACS Appl. Mater. Interfaces 2024, 16, 40914–40926.
- 104.
Van Gerven, T.; Mul, G.; Moulijn, J.; et al. A review of intensification of photocatalytic processes. Chem. Eng. Process 2007, 46, 781–789.
- 105.
Jiang, H.; Chen, H.; Fu, Y.; et al. SnFe2O4 mediated near-infrared-driven photocatalysis, photothermal sterilization and piezocatalysis. Appl. Surf. Sci. 2023, 611, 155555.
- 106.
Lu, D.; Ren, Y.; Yang, Y.; et al. Boosted photocatalytic CO2 reduction by induced electromotive force in rotating magnetic field. Nano Energy 2023, 113, 108578.
- 107.
Gong, Y.N.; Zhong, D.C.; Lu, T.B. Porous Supramolecular Crystalline Materials for Photocatalysis. Angew. Chem. Int. Ed. 2025, 64, e202424452.
- 108.
Munoz, I.; Rieradevall, J.; Torrades, F.; et al. Environmental assessment of different solar driven advanced oxidation processes. Sol. Energy 2005, 79, 369–375.
- 109.
Muñoz, I.; Peral, J.; Ayllón, J.A.; et al. Life cycle assessment of a coupled solar photocatalytic–biological process for wastewater treatment. Water Res. 2006, 40, 3533–3540.
- 110.
Dubsok, A.; Khamdahsag, P.; Kittipongvises, S. Life cycle environmental impact assessment of cyanate removal in mine tailings wastewater by nano-TiO2/FeCl3 photocatalysis. J. Clean. Prod. 2022, 366, 132928.
- 111.
Foteinis, S.; Borthwick, A.G.; Frontistis, Z.; et al. Environmental sustainability of light-driven processes for wastewater treatment applications. J. Clean. Prod. 2018, 182, 8–15.
- 112.
Magdy, M.; Alalm, M.G.; El-Etriby, H.K. Comparative life cycle assessment of five chemical methods for removal of phenol and its transformation products. J. Clean. Prod., 2021, 291, 125923.
- 113.
Dominguez, S.; Laso, J.; Margallo, M.; et al. LCA of greywater management within a water circular economy restorative thinking framework. Sci. Total Environ. 2018, 621, 1047–1056.
- 114.
Pesqueira, J.F.; Pereira, M.F.R.; Silva, A.M. A life cycle assessment of solar-based treatments (H2O2, TiO2 photocatalysis, circumneutral photo-Fenton) for the removal of organic micropollutants. Sci. Total Environ. 2021, 761, 143258.
- 115.
Aboagye, E.; Longo, J.; Conway, M.; et al. Leveraging machine learning algorithms to predict life cycle inventory assessments (LCIA) to facilitate sustainable process design. Comput. Chem. Eng. 2025, 201, 109217.