2601002817
  • Open Access
  • Article

Decoding the Prolonged Suppression of Zn on Fermentative Hydrogen Generation from Sewage Sludge

  • Xiaomin Li 1,2,†,   
  • Mingyang Liu 1,†,   
  • Francesco Secundo 3,   
  • Chen Lyu 2,   
  • Yanan Yin 1,*

Received: 03 Dec 2025 | Revised: 08 Jan 2026 | Accepted: 12 Jan 2026 | Published: 20 Jan 2026

Abstract

The presence of zinc (Zn) in various wastes poses significant challenges to biohydrogen recovery from organic wastes. The inhibitory effect of Zn on hydrogen production from sewage sludge was investigated, and a pronounced inhibition on hydrogen production was observed across the tested Zn concentration range (200–2000 mg/L). With the increase of Zn dosage from 200 mg/L to 500 mg/L, cumulative hydrogen production (hydrogen yield) decreased from 39 mL (73.5 mL/g SCOD) to 8 mL (15.1 mL/g SCOD), corresponding to the increased inhibition rate from 23.5% to 84.3%. When the Zn dosage was further increased to 1000–2000 mg/L, hydrogen production dropped to less than 5 mL (9.42 mL/g SCOD), corresponding to the inhibition rate of over 90%. With the removal of Zn stress, hydrogen-producing capacity in all groups were recovered, and the recovery rate exhibited an increasing trend with the increase of Zn dosage. Microbial-community analysis revealed that Zn addition markedly suppressed hydrogen-producing genera such as Enterococcus and Clostridium_sensu_stricto_14. After stress removal, the system partially reconstituted its hydrogen-producing ability by enriching Zn-tolerant functional genera like Pseudomonas, Acinetobacter and Clostridium_sensu_stricto_13. Metabolic analysis revealed that Zn inhibited hydrogen production by suppressing glucose decomposing and ferredoxin-related hydrogen-producing pathways, and formate decomposition served as the main hydrogen-producing pathway in the presence of Zn stress. After stress removal, glucose decomposing and ferredoxin-related hydrogen-producing pathways replaced formate-decomposing pathway as the hydrogen-producing pathways. This study exhibited a long-term response of microorganisms to Zn inhibition, and provided a theoretical basis for understanding the metabolic mechanism of Zn inhibition on hydrogen production from actual organic waste.

References 

  • 1.

    Jain, R.; Panwar, N.L.; Jain, S.K.; et al. Bio-hydrogen production through dark fermentation: An overview. Biomass Convers. Biorefinery 2024, 14, 12699–12724. https://doi.org/10.1007/s13399-022-03282-7.

  • 2.

    Tian, H.; Li, J.; Yan, M.; et al. Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective. Appl. Energy 2019, 256, 113961. https://doi.org/10.1016/j.apenergy.2019.113961.

  • 3.

    Wang, J.; Yin, Y. Fermentative hydrogen production using various biomass-based materials as feedstock. Renew. Sustain. Energy Rev. 2018, 92, 284–306. https://doi.org/10.1016/j.rser.2018.04.033.

  • 4.

    Das, D.; Veziroglu, T.N. Advances in biological hydrogen production processes. Int. J. Hydrogen Energy 2008, 33, 6046–6057. https://doi.org/10.1016/j.ijhydene.2008.07.098.

  • 5.

    Dahiya, S.; Chatterjee, S.; Sarkar, O.; et al. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2021, 321, 124354. https://doi.org/10.1016/j.biortech.2020.124354.

  • 6.

    Mohanakrishna, G.; Sneha, N.P.; Rafi, S.M.; et al. Dark fermentative hydrogen production: Potential of food waste as future energy needs. Sci. Total Environ. 2023, 888, 163801. https://doi.org/10.1016/j.scitotenv.2023.163801.

  • 7.

    Lin, R.C.; Cheng, J.; Ding, L.K.; et al. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour. Technol. 2015, 196, 250–255. https://doi.org/10.1016/j.biortech.2015.07.097.

  • 8.

    Hidalgo, D.; Martín-Marroquín, J.M.; Corona, F. The role of magnetic nanoparticles in dark fermentation. Biomass Convers. Biorefinery 2023, 13, 16299–16320. https://doi.org/10.1007/s13399-023-04103-1.

  • 9.

    Yu, H.Q.; Fang, H.H.P. Inhibition on acidogenesis of dairy wastewater by zinc and copper. Environ. Technol. 2001, 22, 1459–1465. https://doi.org/10.1080/09593332208618183.

  • 10.

    Yang, G.; Wang, J. Various additives for improving dark fermentative hydrogen production: A review. Renew. Sustain. Energy Rev. 2018, 95, 130–146. https://doi.org/10.1016/j.rser.2018.07.029.

  • 11.

    Maroušek, J. Review: Nanoparticles can change (bio)hydrogen competitiveness. Fuel 2022, 328, 125318. https://doi.org/10.1016/j.fuel.2022.125318.

  • 12.

    Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057.

  • 13.

    Tirapanampai, C.; Intasian, P.; Uthaipaisanwong, P.; et al. Metal additives for boosting hydrogen production in anaerobic fermentation: Focus on the change of gene expression and cost analysis. J. Clean. Prod. 2023, 414, 137609. https://doi.org/10.1016/j.jclepro.2023.137609.

  • 14.

    Guo, G.; Chen, T.B.; Yang, J.; et al. Regional distribution characteristics and variation of heavy metals in sewage sludge of China. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2014, 34, 2455–2461. https://doi.org/10.13671/j.hjkxxb.2014.0619.

  • 15.

    Aguilar, M.I.; Lloréns, M.; Fernández-Garrido, J.M.; et al. Heavy metals effect on the heterotrophic activity of activated sludge. Int. J. Environ. Sci. Technol. 2020, 17, 3111–3118. https://doi.org/10.1007/s13762-020-02704-1.

  • 16.

    Zhang, N.; Lu, C.; Zhang, Z.; et al. Enhancing photo-fermentative biohydrogen production using different zinc salt additives. Bioresour. Technol. 2022, 345, 126561. https://doi.org/10.1016/j.biortech.2021.126561.

  • 17.

    Cho, Y.; Lee, T. Variations of hydrogen production and microbial community with heavy metals during fermentative hydrogen production. J. Ind. Eng. Chem. 2011, 17, 340–345. https://doi.org/10.1016/j.jiec.2011.02.036.

  • 18.

    Lin, C.-Y.; Shei, S.-H. Heavy metal effects on fermentative hydrogen production using natural mixed microflora. Int. J. Hydrogen Energy 2008, 33, 587–593. https://doi.org/10.1016/j.ijhydene.2007.09.030.

  • 19.

    Lyu, C.; Li, X.; Sun, X.; et al. Inhibitory effect of zinc on fermentative hydrogen production: Insight into the long-term effect. Int. J. Hydrogen Energy 2024, 110, 63–73. https://doi.org/10.1016/j.ijhydene.2025.02.239.

  • 20.

    Zheng, X.J.; Yu, H.Q. Biological hydrogen production by enriched anaerobic cultures in the presence of copper and zinc. J. Environ. Sci. Health Part A 2004, 39, 89–101. https://doi.org/10.1081/ese-120027370.

  • 21.

    Li, C.; Fang, H.H.P. Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere 2007, 67, 668–673. https://doi.org/10.1016/j.chemosphere.2006.11.005.

  • 22.

    Zhang, Y.; Zhao, W.; Li, S.; et al. Unraveling the mechanism of increased synthesis of hydrogen from an anaerobic fermentation by zinc ferrate nanoparticles: Mesophilic and thermophilic situations comparison. Bioresour. Technol. 2023, 387, 129617. https://doi.org/10.1016/j.biortech.2023.129617.

  • 23.

    Zhang, Y.-T.; Wei, W.; Ni, B.-J. Revealing the mechanism of zinc oxide nanoparticles facilitating hydrogen production in alkaline anaerobic fermentation of waste activated sludge. J. Clean. Prod. 2021, 328, 129580. https://doi.org/10.1016/j.jclepro.2021.129580.

  • 24.

    Yin, Y.; Hu, J.; Wang, J. Enriching hydrogen-producing bacteria from digested sludge by different pretreatment methods. Int. J. Hydrogen Energy 2014, 39, 13550–13556. https://doi.org/10.1016/j.ijhydene.2014.01.145.

  • 25.

    Wang, J.; Wan, W. Kinetic models for fermentative hydrogen production: A review. Int. J. Hydrogen Energy 2009, 34, 3313–3323. https://doi.org/10.1016/j.ijhydene.2009.02.031.

  • 26.

    Yin, Y.; Wang, J. Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum. Bioresour. Technol. 2016, 200, 217–222. https://doi.org/10.1016/j.biortech.2015.10.027.

  • 27.

    Caspi, R.; Billington, R.; Ferrer, L.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2016, 44, D471–D480. https://doi.org/10.1093/nar/gkv1164.

  • 28.

    Park, J.-H.; Park, J.-H.; Lee, S.-H.; et al. Metabolic flux and functional potential of microbial community in an acidogenic dynamic membrane bioreactor. Bioresour. Technol. 2020, 305, 123060. https://doi.org/10.1016/j.biortech.2020.123060.

  • 29.

    Zhou, Y.; Deng, H.; Wang, X.; et al. Effects of Zn2+ and Mn2+ on the photo-fermentative performance of HY01 in biohydrogen production from xylose fermentation. Int. J. Green Energy 2024, 21, 1829–1834. https://doi.org/10.1080/15435075.2023.2272850.

  • 30.

    Kim, D.-H.; Kim, S.-H.; Shin, H.-S. Sodium inhibition of fermentative hydrogen production. Int. J. Hydrogen Energy 2009, 34, 3295–3304. https://doi.org/10.1016/j.ijhydene.2009.02.051.

  • 31.

    Gadhe, A.; Sonawane, S.S.; Varma, M.N. Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. Int. J. Hydrogen Energy 2015, 40, 10734–10743. https://doi.org/10.1016/j.ijhydene.2015.05.198.

  • 32.

    Chen, Y.; Yin, Y.; Wang, J. Effect of Ni2+ concentration on fermentative hydrogen production using waste activated sludge as substrate. Int. J. Hydrogen Energy 2021, 46, 21844–21852. https://doi.org/10.1016/j.ijhydene.2021.04.054.

  • 33.

    Sharma, P.; Melkania, U. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. Waste Manag. 2018, 75, 289–296. https://doi.org/10.1016/j.wasman.2018.02.005.

  • 34.

    Gao, W.; Song, W.; Chen, Y.; et al. Effect of copper on fermentative hydrogen production from sewage sludge: Insights into working mechanisms. Renew. Energy 2024, 231, 121005. https://doi.org/10.1016/j.renene.2024.121005.

  • 35.

    Yin, Y.; Wang, J. Mechanisms of enhanced hydrogen production from sewage sludge by ferrous ion: Insights into functional genes and metabolic pathways. Bioresour. Technol. 2021, 321, 124435. https://doi.org/10.1016/j.biortech.2020.124435.

  • 36.

    Yin, Y.; Chen, Y.; Wang, J. Co-fermentation of sewage sludge and algae and Fe2+ addition for enhancing hydrogen production. Int. J. Hydrogen Energy 2021, 46, 8950–8960. https://doi.org/10.1016/j.ijhydene.2021.01.009.

  • 37.

    Hallenbeck, P.C. Fermentative hydrogen production: Principles, progress, and prognosis. Int. J. Hydrogen Energy 2009, 34, 7379–7389. https://doi.org/10.1016/j.ijhydene.2008.12.080.

  • 38.

    Zhang, L.; Zhang, Z.; He, X.; et al. Diminished inhibitory impact of ZnO nanoparticles on anaerobic fermentation by the presence of TiO2 nanoparticles: Phenomenon and mechanism. Sci. Total Environ. 2019, 647, 313–322. https://doi.org/10.1016/j.scitotenv.2018.07.468.

  • 39.

    Zhang, W.; Zhang, F.; Li, Y.-X.; et al. No difference in inhibition among free acids of acetate, propionate and butyrate on hydrogenotrophic methanogen of Methanobacterium formicicum. Bioresour. Technol. 2019, 294, 122237. https://doi.org/10.1016/j.biortech.2019.122237.

  • 40.

    Zhang, W.; Zhang, F.; Li, Y.-X.; et al. Inhibitory effects of free propionic and butyric acids on the activities of hydrogenotrophic methanogens in mesophilic mixed culture fermentation. Bioresour. Technol. 2019, 272, 458–464. https://doi.org/10.1016/j.biortech.2018.10.076.

  • 41.

    Yang, G.; Wang, J. Enhancement of biohydrogen production from grass by ferrous ion and variation of microbial community. Fuel 2018, 233, 404–411. https://doi.org/10.1016/j.fuel.2018.06.067.

  • 42.

    Batista, A.P.; Moura, P.; Marques, P.A.S.S.; et al. Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 2014, 117, 537–543. https://doi.org/10.1016/j.fuel.2013.09.077.

  • 43.

    Yin, T.; Wang, W.; Guo, W.; et al. Enhanced Thermophilic Hydrogen Production by an Enriched Novel Acetic-Acid-Type Fermentative Bacterium from Inoculum Sludge with Nonheat Pretreatment. Energy Fuels 2024, 38, 8749–8761. https://doi.org/10.1021/acs.energyfuels.3c04696.

  • 44.

    Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; et al. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042.

  • 45.

    Mugnai, G.; Borruso, L.; Mimmo, T.; et al. Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. Bioresour. Technol. 2021, 319, 124157. https://doi.org/10.1016/j.biortech.2020.124157.

  • 46.

    Vesga-Baron, A.; Etchebehere, C.; Schiappacasse, M.C.; et al. Controlled oxidation-reduction potential on dark fermentative hydrogen production from glycerol: Impacts on metabolic pathways and microbial diversity of an acidogenic sludge. Int. J. Hydrogen Energy 2021, 46, 5074–5084. https://doi.org/10.1016/j.ijhydene.2020.11.028.

  • 47.

    Hung, C.-H.; Chang, Y.-T.; Chang, Y.-J. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—A review. Bioresour. Technol. 2011, 102, 8437–8444. https://doi.org/10.1016/j.biortech.2011.02.084.

  • 48.

    Yang, G.; Wang, J. Changes in microbial community structure during dark fermentative hydrogen production. Int. J. Hydrogen Energy 2019, 44, 25542–25550. https://doi.org/10.1016/j.ijhydene.2019.08.039.

  • 49.

    Cho, S.-K.; Jeong, M.-W.; Choi, Y.-K.; et al. Effects of low-strength ultrasonication on dark fermentative hydrogen production: Start-up performance and microbial community analysis. Appl. Energy 2018, 219, 34–41. https://doi.org/10.1016/j.apenergy.2018.03.047.

  • 50.

    Chuanchuan, D.; Yuling, L.; Penghe, Z.; et al. Study on anaerobic fermentation of waste activated sludge to produce volatile fatty acids by thermal-rhamnolipid treatment. J. Chem. Technol. Biotechnol. 2023, 98, 2168–2180. https://doi.org/10.1002/jctb.7429.

  • 51.

    Hung, C.H.; Lee, K.S.; Cheng, L.H.; et al. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Appl Microbiol Biotechnol 2007, 75, 693–701. https://doi.org/10.1007/s00253-007-0854-7.

  • 52.

    Lin, C.-Y.; Chang, C.-C.; Hung, C.-H. Fermentative hydrogen production from starch using natural mixed cultures. Int. J. Hydrogen Energy 2008, 33, 2445–2453. https://doi.org/10.1016/j.ijhydene.2008.02.069.

  • 53.

    Porwal, S.; Kumar, T.; Lal, S.; et al. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 2008, 99, 5444–5451. https://doi.org/10.1016/j.biortech.2007.11.011.

  • 54.

    Guo, L.; Li, X.-M.; Zeng, G.-M.; et al. Effective hydrogen production using waste sludge and its filtrate. Energy 2010, 35, 3557–3562. https://doi.org/10.1016/j.energy.2010.04.005.

  • 55.

    Xiao, B.; Liu, J. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J. Hazard. Mater. 2009, 168, 163–167. https://doi.org/10.1016/j.jhazmat.2009.02.008.

  • 56.

    Maintinguer, S.I.; Fernandes, B.S.; Duarte, I.C.S.; et al. Fermentative hydrogen production with xylose by Clostridium and Klebsiella species in anaerobic batch reactors. Int. J. Hydrogen Energy 2011, 36, 13508–13517. https://doi.org/10.1016/j.ijhydene.2011.07.095.

  • 57.

    Li, Y.Q.; Gu, C.T. Enterococcus pingfangensis sp. nov., Enterococcus dongliensis sp. nov., Enterococcus hulanensis sp. nov., Enterococcus nangangensis sp. nov. and Enterococcus songbeiensis sp. nov., isolated from Chinese traditional pickle juice. Int. J. Syst. Evol. Microbiol. 2019, 69, 3191–3201. https://doi.org/10.1099/ijsem.0.003608.

  • 58.

    Wang, A.; Gao, L.; Ren, N.; et al. Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnol. Lett. 2009, 31, 1321–1326. https://doi.org/10.1007/s10529-009-0028-z.

  • 59.

    Hou, Y.-N.; Yang, C.; Zhou, A.; et al. Microbial community response and SDS-PAGE reveal possible mechanism of waste activated sludge acidification enhanced by microaeration coupled thermophilic pretreatment. Process Biochem. 2018, 64, 1–8. https://doi.org/10.1016/j.procbio.2017.09.010.

  • 60.

    Takai, K.; Moser, D.P.; Onstott, T.C.; et al. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int. J. Syst. Evol. Microbiol. 2001, 51, 1245–1256. https://doi.org/10.1099/00207713-51-4-1245.

  • 61.

    Hu, J.M.; Yu, L.; Huang, T.Y. Impact of Anthraquinone-2-sulfonic Acid on the MO Decolorization, Hydrogen Production and Energy Creation During Anaerobic Fermentation of Klebsiella oxytocaGS-4-08 with Sucrose. Huan Jing Ke Xue 2016, 37, 3891–3898. https://doi.org/10.13227/j.hjkx.2016.10.030.

  • 62.

    Quaye, J.A.; Gadda, G. Uncovering Zn2+ as a cofactor of FAD-dependent Pseudomonas aeruginosa PAO1 d-2-hydroxyglutarate dehydrogenase. J. Biol. Chem. 2023, 299, 103007. https://doi.org/10.1016/j.jbc.2023.103007.

  • 63.

    Huang, L.K.; Wang, G.Z.; Han, L.M.; et al. Efficiency of electroplating wastewater treatment by suspended carrier integrated with MBR technology. Zhongguo Huanjing Kexue/China Environ. Sci. 2018, 38, 2490–2497.

  • 64.

    Ma, H.; Wu, M.; Liu, H.; et al. Study on enhancing sludge methanogenesis by adding acetylene black and effect on the characteristics & microbial community of anaerobic granular sludge. RSC Adv. 2019, 9, 23086–23095. https://doi.org/10.1039/C9RA03142A.

  • 65.

    Zhao, W.; Jiang, H.; Dong, W.; et al. Elevated caproic acid production from one-stage anaerobic fermentation of organic waste and its selective recovery by electro-membrane process. Bioresour. Technol. 2024, 399, 130647. https://doi.org/10.1016/j.biortech.2024.130647.

  • 66.

    Fanfoni, E.; Sinisgalli, E.; Fontana, A.; et al. Microbial Characterisation of a Two-Stage Anaerobic Digestion Process for Conversion of Agri-Based Feedstock in Biogas and Long-Chain Fatty Acids in a Circular Economy Framework. Fermentation 2024, 10, 293. https://doi.org/10.3390/fermentation10060293.

  • 67.

    Vu, D.H.; Wainaina, S.; Taherzadeh, M.J.; et al. Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered 2021, 12, 2480–2498. https://doi.org/10.1080/21655979.2021.1935524.

  • 68.

    Lalman, J.A.; Chaganti, S.R.; Moon, C.; et al. Elucidating acetogenic H2 consumption in dark fermentation using flux balance analysis. Bioresour. Technol. 2013, 146, 775–778. https://doi.org/10.1016/j.biortech.2013.07.125.

  • 69.

    Yin, Y.; Song, W.; Wang, J. Inhibitory effect of acetic acid on dark-fermentative hydrogen production. Bioresour. Technol. 2022, 364, 128074. https://doi.org/10.1016/j.biortech.2022.128074.

Share this article:
How to Cite
Li, X.; Liu, M.; Secundo, F.; Lyu, C.; Yin, Y. Decoding the Prolonged Suppression of Zn on Fermentative Hydrogen Generation from Sewage Sludge. Environmental and Microbial Technology 2026, 1 (1), 7.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.