2602002991
  • Open Access
  • Review

Generation, Detection and Regulation Strategies of Reactive Species in Persulfate Activation Systems

  • Shizong Wang 1,2,*,   
  • Jianlong Wang 1,2

Received: 31 Dec 2025 | Revised: 03 Feb 2026 | Accepted: 05 Feb 2026 | Published: 09 Feb 2026

Abstract

Persulfate-based advanced oxidation processes (AOPs) have emerged as highly promising technologies for degrading recalcitrant organic pollutants due to their flexible activation pathways and the diverse range of reactive species generated. This review establishes a comprehensive framework that encompasses mechanistic generation pathways, identification methods, and regulation strategies of both radical and non-radical species. Through this framework, the review reveals several fundamental challenges that hinder practical application, including uncertainties in identifying dominant reactive species in complex matrices, the intricate influence of coexisting ions and natural organic matter, catalyst deactivation under long-term operation, and the lack of sustainable and scalable synthesis routes for high-performance catalysts. In response to these issues, the review finally provides recommendations, such as integrating various characterization methods, developing predictive kinetic and computational models, engineering structurally robust and environmentally benign catalysts, and incorporating machine-learning tools to guide rational catalyst design and pathway prediction. These strategies outline clear future directions for advancing persulfate-based AOPs toward practical implementation. Overall, this work offers a systematic and insightful foundation that not only deepens mechanistic understanding but also bridges the gap between laboratory discoveries and real-world water treatment applications.

References 

  • 1.

    Ruan, T.; Li, P.; Wang, H.; et al. Identification and prioritization of environmental organic pollutants: From an analytical and toxicological perspective. Chem. Rev. 2023, 123, 10584–10640.

  • 2.

    Zhou, W.; Li, M.; Achal, V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg. Contam. 2025, 11, 100410.

  • 3.

    Shi, Y.; Feng, D.; Ahmad, S.; et al. Recent advances in metal–organic frameworks–derived carbon-based materials in sulfate radical-based advanced oxidation processes for organic pollutant removal. Chem. Eng. J. 2023, 454, 140244.

  • 4.

    Yu, T.; Chen, H.; Hu, T.; et al. Recent advances in the applications of encapsulated transition-metal nanoparticles in advanced oxidation processes for degradation of organic pollutants: A critical review. Appl. Catal. B Environ. 2024, 342, 123401.

  • 5.

    Wang, S.; Wang, J. Electron beam technology coupled to Fenton oxidation for advanced treatment of dyeing wastewater: From laboratory to full application. ACS EST Water 2022, 2, 852–862.

  • 6.

    Fareed, A.; Hussain, A.; Nawaz, M.; et al. The impact of prolonged use and oxidative degradation of Atrazine by Fenton and photo-Fenton processes. Environ. Technol. Innov. 2021, 24, 101840.

  • 7.

    Wang, N.; Lin, C.; Ren, Z.; et al. Radical and non-radical mechanisms for removal of micropollutants in peroxymonosulfate activation systems: Their generation and identification. Appl. Catal. B Environ. Energy 2025, 383, 126139.

  • 8.

    Li, H.; Qin, X.; Wang, K.; et al. Insight into metal-based catalysts for heterogeneous peroxymonosulfate activation: A critical review. Sep. Purif. Technol. 2024, 333, 125900.

  • 9.

    Shang, Y.; Xu, X.; Gao, B.; et al. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

  • 10.

    Wang, A.; Zhu, B.-Z.; Huang, C.-H.; et al. Generation mechanism of singlet oxygen from the interaction of peroxymonosulfate and chloride in aqueous systems. Water Res. 2023, 235, 119904.

  • 11.

    Wang, Y.; Wang, S.Z.; Liu, Y.; et al. Visible light-enhanced interface interaction for PMS activation towards the removal of emerging organic pollutants: performance, mechanism and toxicity. Sep. Purif. Technol. 2025, 354, 128741.

  • 12.

    Wang, S.Z.; Wang, J.L.; Lai, B. Support-modulated coordination environments direct divergent PMS activation pathways in Co single-atom catalysts. Appl. Catal. B Environ. Energy 2025, 125898.

  • 13.

    Zhu, S.; Huang, X.; Ma, F.; et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environ. Sci. Technol. 2018, 52, 8649–8658.

  • 14.

    Mi, X.; Wang, P.; Xu, S.; et al. Almost 100% peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew. Chem. 2021, 133, 4638–4643.

  • 15.

    Zhang, X.; Tang, J.; Wang, L.; et al. Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction. Nat. Commun. 2024, 15, 917.

  • 16.

    Garcia-Segura, S.; Qu, X.; Alvarez, P.J.J.; et al. Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater–A perspective. Environ. Sci. Nano 2020, 7, 2178–2194.

  • 17.

    Tian, D.; Zhou, H.; Zhang, H.; et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies. Chem. Eng. J. 2022, 428, 131166.

  • 18.

    He, S.; Chen, Y.; Li, X.; et al. Heterogeneous photocatalytic activation of persulfate for the removal of organic contaminants in water: A critical review. Acs EsT Eng. 2022, 2, 527–546.

  • 19.

    Aziz, K.H.H.; Mustafa, F.S.; Hama, S. Pharmaceutical removal from aquatic environments using multifunctional metal-organic frameworks (MOFs) materials for adsorption and degradation processes: A review. Coord. Chem. Rev. 2025, 542, 216875.

  • 20.

    Peng, W.; Dong, Y.; Fu, Y.; et al. Non-radical reactions in persulfate-based homogeneous degradation processes: A review. Chem. Eng. J. 2021, 421, 127818.

  • 21.

    Wang, S.Z.; Wang, J.L. Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate. Chem. Eng. J. 2018, 336, 595–601.

  • 22.

    Yan, Y.; Wei, Z.; Duan, X.; et al. Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes. Environ. Sci. Technol. 2023, 57, 12153–12179.

  • 23.

    Lu, J.; Lu, Q.; Di, L.; et al. Iron-based biochar as efficient persulfate activation catalyst for emerging pollutants removal: A review. Chin. Chem. Lett. 2023, 34, 108357.

  • 24.

    Song, H.; Yan, L.; Wang, Y.; et al. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation. Chem. Eng. J. 2020, 391, 123560.

  • 25.

    Weng, Z.; Lin, Y.; Guo, S.; et al. Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100% selectivity. Angew. Chem. 2023, 135, e202310934.

  • 26.

    Zhang, H.; Xie, C.; Chen, L.; et al. Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co (II)/peroxymonosulfate catalytic activation system. Water Res. 2023, 229, 119392.

  • 27.

    Zhu, Y.; Liu, Y.; Li, P.; et al. A comparative study of peroxydisulfate and peroxymonosulfate activation by a transition metal-H2O2 system. Environ. Sci. Pollut. Res. 2021, 28, 47342–47353.

  • 28.

    Ma, W.; Ren, X.; Li, J.; et al. Advances in atomically dispersed metal and nitrogen Co-doped carbon catalysts for advanced oxidation technologies and water remediation: From microenvironment modulation to non-radical mechanisms. Small 2024, 20, 2308957.

  • 29.

    Das, T.N. Reactivity and role of SO5•− radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation. J. Phys. Chem. A 2001, 105, 9142–9155.

  • 30.

    Yang, Y.; Jiang, J.; Lu, X.; et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. Environ. Sci. Technol. 2015, 49, 7330–7339.

  • 31.

    Lee, J.; Von Gunten, U.; Kim, J.-H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.

  • 32.

    Liang, J.; Chen, K.; Duan, X.; et al. pH-dependent generation of radical and nonradical species for sulfamethoxazole degradation in different carbon/persulfate systems. Water Res. 2022, 224, 119113.

  • 33.

    Zhou, D.; Li, Z.; Hu, X.; et al. Single atom catalyst in persulfate oxidation reaction: From atom species to substance. Small 2024, 20, 2311691.

  • 34.

    Zhu, H.; Ma, H.; Zhao, Z.; et al. Electron transfer tuning for persulfate activation via the radical and non-radical pathways with biochar mediator. J. Hazard. Mater. 2025, 486, 136825.

  • 35.

    Liu, C.; Ding, Z.; Shi, M.; et al. Dependence of superoxide radical generation on peroxymonosulfate under visible light: Enrofloxacin degradation and mechanism insight. Chem. Eng. J. 2024, 485, 149721.

  • 36.

    Furman, O.S.; Teel, A.L.; Watts, R.J. Mechanism of base activation of persulfate. Environ. Sci. Technol. 2010, 44, 6423–6428.

  • 37.

    Luo, L.; Han, X.; Wang, K.; et al. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+. Nat. Commun. 2023, 14, 2690.

  • 38.

    Yu, G.; Wang, Y.; Cao, H.; et al. Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification. Environ. Sci. Technol. 2020, 54, 5931–5946.

  • 39.

    Yang, H.; Qiu, R.; Tang, Y.; et al. Carbonyl and defect of metal-free char trigger electron transfer and O2•− in persulfate activation for Aniline aerofloat degradation. Water Res. 2023, 231, 119659.

  • 40.

    Nidheesh, P.V.; Boczkaj, G.; Ganiyu, S.O.; et al. Generation, properties, and applications of singlet oxygen for wastewater treatment: A review. Environ. Chem. Lett. 2025, 23, 195–240.

  • 41.

    Tian, C.; Dai, C.; Tian, X.; et al. Effects of Lewis acid-base site and oxygen vacancy in MgAl minerals on peroxymonosulfate activation towards sulfamethoxazole degradation via radical and non-radical mechanism. Sep. Purif. Technol. 2022, 286, 120437.

  • 42.

    Tao, Y.; Hou, Y.; Yang, H.; et al. Interlayer synergistic reaction of radical precursors for ultraefficient 1O2 generation via quinone-based covalent organic framework. Proc. Natl. Acad. Sci. USA 2024, 121, e2401175121.

  • 43.

    Yi, Q.; Ji, J.; Shen, B.; et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ. Sci. Technol. 2019, 53, 9725–9733. 

  • 44.

    Gao, Y.; Chen, Z.; Zhu, Y.; et al. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms. Environ. Sci. Technol. 2019, 54, 1232–1241.

  • 45.

    Hu, H.; Chen, D.; Liang, Y.; et al. Understanding the active sites and associated reaction pathways of metal-free carbocatalysts in persulfate activation and pollutant degradation. Environ. Sci. Nano 2024, 11, 1368–1393.

  • 46.

    Zhao, H.-Q.; Song, J.-S.; Lu, P.; et al. Single atom Co-anchored nitrogen-doped graphene for peroxymonosulfate activation with high selectivity of singlet oxygen generation. Chem. Eng. J. 2023, 456, 141045.

  • 47.

    Ali, J.; Zhan, K.; Wang, H.; et al. Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide. Environ. Sci. Technol. 2020, 54, 2476–2488.

  • 48.

    Wei, Y.; Miao, J.; Cui, J.; et al. Heteroatom substitution enhances generation and reactivity of surface-activated peroxydisulfate complexes for catalytic Fenton-like reactions. J. Hazard. Mater. 2024, 467, 133753.

  • 49.

    Chen, J.; Zhou, X.; Sun, P.; et al. Complexation enhances Cu (II)-activated peroxydisulfate: A novel activation mechanism and Cu (III) contribution. Environ. Sci. Technol. 2019, 53, 11774–11782.

  • 50.

    Wang, X.; Li, W.; Zhang, J.; et al. The critical roles of surface-bound radicals in the nickel phosphide/biochar-persulfate catalytic oxidation system for tetracycline removal: The synergistic catalysis between nickel phosphides and biochar. Chem. Eng. J. 2024, 491, 151915. https://doi.org/10.1016/j.cej.2024.151915.

  • 51.

    Chen, J.; Dong, L.; Huang, S.; et al. Underestimated role of surface-bound peroxymonosulfate and overestimated role of SO4•-and 1O2 in peroxymonosulfate activation with metal oxides. J. Phys. Chem. C 2025, 129, 20573-20582

  • 52.

    Fan, Y.; Zhang, Q.; Peng, Y.; et al. Activation of high-valent metal oxidants on carbon catalysts: Mechanisms, applications and challenges. ACS EST Eng. 2025, 5, 1338-1356

  • 53.

    He, Y.; Qin, H.; Wang, Z.; et al. Fe-Mn oxycarbide anchored on N-doped carbon for enhanced Fenton-like catalysis: Importance of high-valent metal-oxo species and singlet oxygen. Appl. Catal. B Environ. 2024, 340, 123204.

  • 54.

    Wang, S.Z; Wang, J.L. Single atom cobalt catalyst derived from co-pyrolysis of vitamin B12 and graphitic carbon nitride for PMS activation to degrade emerging pollutants. Appl. Catal. B Environ. 2023, 321, 122051.

  • 55.

    Zhou, H.; He, Y.-l.; Peng, J.; et al. High-valent metal-oxo species transformation and regulation by co-existing chloride: Reaction pathways and impacts on the generation of chlorinated by-products. Water Res. 2024, 257, 121715.

  • 56.

    Sen, A.; Sharma, S.; Rajaraman, G. Bridging the oxo wall: A new perspective on high-valent metal-oxo species and their reactivity in Mn, Fe, and Co complexes. Angew. Chem. Int. Ed. 2025, 64, e202419953.

  • 57.

    Wang, C.; Xiao, J. Activation of molecular oxygen and selective oxidation with metal complexes. Acc. Chem. Res. 2025, 58, 714–731.

  • 58.

    Tang, L.; Liu, Y.; Wang, J.; et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Appl. Catal. B Environ. 2018, 231, 1–10.

  • 59.

    Ming, H.; Bian, X.; Cheng, J.; et al. Carbon nitride with a tailored electronic structure toward peroxymonosulfate activation: A direct electron transfer mechanism for organic pollutant degradation. Appl. Catal. B Environ. 2024, 341, 123314.

  • 60.

    Ren, W.; Cheng, C.; Shao, P.; et al. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environ. Sci. Technol. 2021, 56, 78–97.

  • 61.

    Wang, B.; Zhu, E.; Tang, S.; et al. Peroxymonosulfate activation by molybdenum carbide for water decontamination: Key role of surface activated complex. Chem. Eng. J. 2025, 508, 160980.

  • 62.

    Zhao, Y.; Yu, L.; Song, C.; et al. Selective degradation of electron-rich organic pollutants induced by CuO@ Biochar: The key role of outer-sphere interaction and singlet oxygen. Environ. Sci. Technol. 2022, 56, 10710–10720.

  • 63.

    Duan, P.; Li, M.; Xu, X.; et al. Understanding of interfacial molecular interactions and inner-sphere reaction mechanism in heterogeneous Fenton-like catalysis on Mn-N4 site. Appl. Catal. B Environ. Energy 2024, 344, 123619.

  • 64.

    Huang, M.; Han, Y.; Xiang, W.; et al. In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradation. Environ. Sci. Technol. 2021, 55, 15361–15370.

  • 65.

    Yang, P.; Tang, J.; Ding, Z.; et al. Sp-hybridized carbon-facilitated peroxymonosulfate activation for superior phenolic pollutant removal. J. Hazard. Mater. 2025, 490, 137843.

  • 66.

    Ren, W.; Nie, G.; Zhou, P.; et al. The intrinsic nature of persulfate activation and N-doping in carbocatalysis. Environ. Sci. Technol. 2020, 54, 6438–6447.

  • 67.

    Wang, Y.; Liu, Y.; Zhang, H.; et al. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem. Soc. Rev. 2025, 54, 2436–2482

  • 68.

    Peng, J.; Zhou, P.; Zhou, H.; et al. Insights into the electron-transfer mechanism of permanganate activation by graphite for enhanced oxidation of sulfamethoxazole. Environ. Sci. Technol. 2021, 55, 9189–9198.

  • 69.

    Zhou, Q.; Song, C.; Wang, P.; et al. Generating dual-active species by triple-atom sites through peroxymonosulfate activation for treating micropollutants in complex water. Proc. Natl. Acad. Sci. USA 2023, 120, e2300085120.

  • 70.

    Yin, R.; Guo, W.; Wang, H.; et al. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms. Chem. Eng. J. 2018, 334, 2539–2546.

  • 71.

    Buxton, G.V.; Greenstock, C.L.; Phillips Helman, W.; et al. Critical review of rate constants for reacitons of hydrated electrons. J. Phys. Chem. Ref. Data 1988, 17. https://doi.org/10.1063/1.555805

  • 72.

    Haag, W.R.; Gassman, E. Singlet oxygen in surface waters—Part I: Furfuryl alcohol as a trapping agent. Chemosphere 1984, 13, 631–640.

  • 73.

    Wang, S.Z.; Liu, Y.; Wang, J.L. Peroxymonosulfate activation by Fe–Co–O-codoped graphite carbon nitride for degradation of sulfamethoxazole. Environ. Sci. Technol. 2020, 54, 10361–10369.

  • 74.

    Sun, Z.; Zhao, M.; Zhou, X. Reliability analysis of NaN3 as quencher of 1O2 in heterogeneous persulfate catalytic oxidation system. Catal. Commun. 2023, 183, 106774.

  • 75.

    Wang, H.; Song, Y.; Xiong, J.; et al. Highly selective oxidation of furfuryl alcohol over monolayer titanate nanosheet under visible light irradiation. Appl. Catal. B Environ. 2018, 224, 394–403.

  • 76.

    Zong, Y.; Guan, X.; Xu, J.; et al. Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt (II)-activated peroxymonosulfate process. Environ. Sci. Technol. 2020, 54, 16231–16239.

  • 77.

    Pan, Q.; Wang, C.; Zhan, P.; et al. Generation and regulation of high-valent metal species in advanced oxidation processes. Environ. Funct. Mater. 2025, 4, 1–10.

  • 78.

    Lei, Y.; Yu, Y.; Lei, X.; et al. Assessing the use of probes and quenchers for understanding the reactive species in advanced oxidation processes. Environ. Sci. Technol. 2023, 57, 5433–5444.

  • 79.

    Cai, L.; Yao, Q.; Du, X.; et al. Identification of superoxide contribution through the quenching method and model system. ACS EST Eng. 2024, 4, 2145–2154.

  • 80.

    Wang, S.Z.; Xu, L.J.; Wang, J.L. Iron-based dual active site-mediated peroxymonosulfate activation for the degradation of emerging organic pollutants. Environ. Sci. Technol. 2021, 55, 15412–15422.

  • 81.

    Zong, Y.; Chen, L.; Zeng, Y.; et al. Do we appropriately detect and understand singlet oxygen possibly generated in advanced oxidation processes by electron paramagnetic resonance spectroscopy? Environ. Sci. Technol. 2023, 57, 9394–9404.

  • 82.

    Zhang, C.; Liu, X.; Jiang, M.; et al. A review on identification, quantification, and transformation of active species in SCR by EPR spectroscopy. Environ. Sci. Pollut. Res. 2023, 30, 28550–28562.

  • 83.

    Chen, L.; Duan, J.; Du, P.; et al. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 2022, 221, 118747.

  • 84.

    Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848.

  • 85.

    Bakker, M.G.; Fowler, B.; Bowman, M.K.; et al. Experimental methods in chemical engineering: Electron paramagnetic resonance spectroscopy-EPR/ESR. Can. J. Chem. Eng. 2020, 98, 1668–1681.

  • 86.

    Cai, J.; Niu, T.; Shi, P.; et al. Boron-doped diamond for hydroxyl radical and sulfate radical anion electrogeneration, transformation, and voltage-free sustainable oxidation. Small 2019, 15, 1900153.

  • 87.

    Liao, J.; Li, K.; Ma, H.; et al. Oxygen vacancies on the BiOCl surface promoted photocatalytic complete NO oxidation via superoxide radicals. Chin. Chem. Lett. 2020, 31, 2737–2741.

  • 88.

    Mendoza, C.; Désert, A.; Khrouz, L.; et al. Heterogeneous singlet oxygen generation: In-operando visible light EPR spectroscopy. Environ. Sci. Pollut. Res. 2021, 28, 25124–25129.

  • 89.

    Wang, J.; Shen, S.; Li, X.; et al. Photoexcited active radicals for environmental and energy applications: Generation, regulation, and dynamic tracking. Chem. Rev. 2025, 125, 7811–7917.

  • 90.

    Nikam, R.; Chattopadhyay, A. A computational investigation on the photochemistry of the popular spin-trap agent N-tert-butyl-α-phenylnitrone (PBN) and thermal isomerization pathways of its photoproduct oxaziridine. Int. J. Quantum Chem. 2024, 124, e27369.

  • 91.

    Yang, S.; Sun, S.; Xie, Z.; et al. Comprehensive insight into the common organic radicals in advanced oxidation processes for water decontamination. Environ. Sci. Technol. 2024, 58, 19571–19583.

  • 92.

    Wang, P.; Zhang, L.; Wang, C.; et al. Inherent persistent free radicals in nonextractable contaminated soil residue driven nontarget reactions and phenolic polymerization in H2O2-based in situ remediation. Environ. Sci. Technol. 2025, 59, 20665–20674.

  • 93.

    Grajewski, J.; Zgorzelak, M.; Janiak, A.; et al. Controlled, sunlight-driven reversible cycloaddition of multiple singlet oxygen molecules to anthracene-containing trianglimine macrocycles. Chempluschem 2022, 87, e202100510.

  • 94.

    Charbouillot, T.; Brigante, M.; Mailhot, G.; et al. Performance and selectivity of the terephthalic acid probe for OH as a function of temperature, pH and composition of atmospherically relevant aqueous media. J. Photochem. Photobiol. A Chem. 2011, 222, 70–76.

  • 95.

    Shen, T.; Su, W.; Yang, Q.; et al. Synergetic mechanism for basic and acid sites of MgMxOy (M = Fe, Mn) double oxides in catalytic ozonation of p-hydroxybenzoic acid and acetic acid. Appl. Catal. B Environ. 2020, 279, 119346.

  • 96.

    Wang, J.; Xu, M.; Liang, X.; et al. Development of a novel 2D Ni-MOF derived NiO@ C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater. Sep. Purif. Technol. 2021, 263, 118368.

  • 97.

    Kim, M.S.; Lee, C.; Kim, J.-H. Occurrence of unknown reactive species in UV/H2O2 system leading to false interpretation of hydroxyl radical probe reactions. Water Res. 2021, 201, 117338.

  • 98.

    Le, H.T.; Nguyen, D.P.L.; Shin, H.S.; et al. Chemistry of the carboxylic acid of dihydrofluorescein in oxidation and its application to fluorogenic ROS sensing. Free Radic. Res. 2021, 55, 461–468.

  • 99.

    Wang, M.; Ma, J.; Liu, H.; et al. Sustainable productions of organic acids and their derivatives from biomass via selective oxidative cleavage of C–C bond. ACS Catal. 2018, 8, 2129–2165.

  • 100.

    George, C.; Rassy, H.E.; Chovelon, J.M. Reactivity of selected volatile organic compounds (VOCs) toward the sulfate radical (SO4−). Int. J. Chem. Kinet. 2001, 33, 539–547.

  • 101.

    Sim Choi, H.; Woo Kim, J.; Cha, Y.N.; et al. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J. Immunoass. Immunochem. 2006, 27, 31–44.

  • 102.

    Koppenol, W.H.; Van Buuren, K.J.H.; Butler, J.; et al. The kinetics of the reduction of cytochrome c by the superoxide anion radical. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 1976, 449, 157–168.

  • 103.

    Benov, L.; Sztejnberg, L.; Fridovich, I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic. Biol. Med. 1998, 25, 826–831.

  • 104.

    Bedouhène, S.; Moulti-Mati, F.; Hurtado-Nedelec, M.; et al. Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils. Am. J. Blood Res. 2017, 7, 41.

  • 105.

    Chen, Y.; Zhao, C.; Li, Y.; et al. Nitrogen-doped carbon modified with boron atoms activating peroxydisulfate for sulfamethoxazole degradation: The electron transfer-dominated pathway. J. Environ. Chem. Eng. 2025, 13, 116080. https://doi.org/10.1016/j.jece.2025.116080.

  • 106.

    Huang, K.Z.; Zhang, H. Galvanic oxidation processes (GOPs): An effective direct electron transfer approach for organic contaminant oxidation. Sci. Total Environ. 2020, 743, 140828.

  • 107.

    Zhang, Z.; Zang, Z.; Guo, J.; et al. High-temporal-resolution in situ sensor for oceanic CO2 isotope measurement enabling multidimensional isotope tracing analysis (R13C, R18O, and R17O) via laser absorption spectroscopy. Anal. Chem. 2024, 96, 1195–1204.

  • 108.

    Min, N.; Yao, J.; Wu, L.; et al. Isotope fractionation of diethyl phthalate during oxidation degradation by persulfate activated with zero-valent iron. Chem. Eng. J. 2022, 435, 132132.

  • 109.

    Wang, A.; Wang, W.; Xu, J.; et al. Enhancing oxygen evolution reaction by simultaneously triggering metal and lattice oxygen redox pair in iridium loading on Ni-Doped Co3O4. Adv. Energy Mater. 2023, 13, 2302537.

  • 110.

    Lin, Y.; Yu, L.; Tang, L.; et al. In situ identification and time-resolved observation of the interfacial state and reactive intermediates on a cobalt oxide nanocatalyst for the oxygen evolution reaction. ACS Catal. 2022, 12, 5345–5355.

  • 111.

    Ma, F.; Fu, J.; Zhang, J.; et al. Structural tailoring of carbon-based catalysts for persulfate activation toward emerging contaminant remediation: Performance, mechanisms, and applications. J. Environ. Chem. Eng. 2025, 14, 120780.

  • 112.

    Zhang, R.; Li, Q.; Du, H.; et al. A review on the correlation among active sites, oxidative species, and degradation routes in persulfate activation by carbon-based iron composites for antibiotics oxidation. Chem. Eng. J. 2025, 518, 164833.

  • 113.

    Li, F.; Lu, Z.; Li, T.; et al. Origin of the excellent activity and selectivity of a single-atom copper catalyst with unsaturated Cu-N2 sites via peroxydisulfate activation: Cu (III) as a dominant oxidizing species. Environ. Sci. Technol. 2022, 56, 8765–8775.

  • 114.

    Wang, S.Z.; Wang, J.L.; Xu, H. Discrepant catalytic activity of biochar-based Fe and Co homonuclear and heteronuclear diatomic catalysts for activating peroxymonosulfate to degrade emerging pollutants. ACS EST Eng. 2024, 4, 1758–1768.

  • 115.

    He, C.; Zhang, Z.; Wang, J.; et al. Mn–Ce bicenter of a dual single-atom catalyst synergistically triggers reactive oxygen species generation for efficient ozonation of emerging contaminants. ACS EST Eng. 2024, 4, 2002–2014.

  • 116.

    Yin, Y.; Lv, R.; Zhang, W.; et al. Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment. Appl. Catal. B Environ. 2021, 295, 120282. https://doi.org/10.1016/j.apcatb.2021.120282.

  • 117.

    Wang, S.Z.; Wang, J.L. Cobalt-silicon coordination-induced nonradical activation of peroxymonosulfate for enhancing the degradation of organic pollutants in real wastewater. Small 2025, 21, 2500434. https://doi.org/10.1002/smll.202500434.

  • 118.

    Kang, H.; Chen, Y.; Cheng, M.; et al. State-of-the-art structural regulation methods and quantum chemistry for carbon-based single-atom catalysts in advanced oxidation process: Critical perspectives into molecular level. Adv. Mater. 2025, 37, 2505128. https://doi.org/10.1002/adma.202505128.

  • 119.

    Song, J.; Hou, N.; Liu, X.; et al. Asymmetrically coordinated CoB1N3 moieties for selective generation of high-valence Co-Oxo species via coupled electron–proton transfer in fenton-like reactions. Adv. Mater. 2023, 35, 2209552.

  • 120.

    Li, X.; Wen, X.; Lang, J.; et al. CoN1O2 single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt (IV) = O generation. Angew. Chem. 2023, 135, e202303267.

  • 121.

    Wang, X.; Xiong, Z.; Shi, H.; et al. Switching the reaction mechanisms and pollutant degradation routes through active center size-dependent Fenton-like catalysis. Appl. Catal. B Environ. 2023, 329, 122569. https://doi.org/10.1016/j.apcatb.2023.122569.

  • 122.

    Tang, L.; Zhou, D.; Hu, J.; et al. Emerging investigator series: Recent progress on the activation of persulfate by vacancy defect materials: The role of vacancies. Environ. Sci. Nano 2024, 11, 3230–3249.

  • 123.

    Muhammad, P.; Zada, A.; Rashid, J.; et al. Defect engineering in nanocatalysts: From design and synthesis to applications. Adv. Funct. Mater. 2024, 34, 2314686.

  • 124.

    Chen, S.; Li, J.; Zhou, W.; et al. Engineering defects in heterogeneous catalytic persulfates for water purification: An overlooked role? Coord. Chem. Rev. 2024, 507, 215749.

  • 125.

    Pan, M.; Tang-Hu, S.-Y.; Li, C.; et al. Oxygen vacancy-mediated peroxydisulfate activation and singlet oxygen generation toward 2, 4-dichlorophenol degradation on specific CuO1−x nanosheets. J. Hazard. Mater. 2023, 441, 129944.

  • 126.

    Wang, M.-M.; Liu, L.-J.; Xi, J.-R.; et al. Lattice doping of Zn boosts oxygen vacancies in Co3O4 nanocages: Improving persulfate activation via forming surface-activated complex. Chem. Eng. J. 2023, 451, 138605.

  • 127.

    Bu, Y.; Li, H.; Yu, W.; et al. Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants. Environ. Sci. Technol. 2021, 55, 2110–2120.

  • 128.

    Zhao, Y.; Zhang, B.; Xia, B.; et al. Defect engineering boosted peroxydisulfate activation of dual-vacancy Cu–Fe spinel oxides for soil organics decontamination. ACS EST Eng. 2024, 4, 2025–2035. https://doi.org/10.1021/acsestengg.4c00195.

  • 129.

    Qin, J.; Duan, M.; Zhang, Y.; et al. Nitrogen-vacancy-rich Co3O4/carbon nitride activating peroxymonosulfate for efficient micropollutant degradation: Dominant role of superoxide radicals. Environ. Res. 2025, 285, 122460.

  • 130.

    Wang, Q.; Lu, J.; Yu, M.; et al. Sulfur vacancy rich MoS2/FeMoO4 composites derived from MIL-53 (Fe) as PMS activator for efficient elimination of dye: Nonradical 1O2 dominated mechanism. Environ. Pollut. 2023, 333, 121990.

  • 131.

    Yu, S.; Peng, Y.; Shao, P.; et al. Electron-transfer-based peroxymonosulfate activation on defect-rich carbon nanotubes: Understanding the substituent effect on the selective oxidation of phenols. J. Hazard. Mater. 2023, 442, 130108.

  • 132.

    Jia, Y.; Yao, X. Defects in carbon-based materials for electrocatalysis: Synthesis, recognition, and advances. Acc. Chem. Res. 2023, 56, 948–958.

  • 133.

    Zou, Y.; Wang, S.Z.; Wang, J.L.; et al. Gamma-irradiation induced non-equilibrium defect states in ferric oxychloride promote high-valent iron-oxo pathways for enhanced degradation of sulfamethoxazole from wastewater. Sep. Purif. Technol. 2025, 382, 136044.

  • 134.

    Ye, F.; Shi, Y.; Sun, W.; et al. Construction of adsorption-oxidation bifunction-oriented carbon by single boron doping for non-radical antibiotic degradation via persulfate activation. Chem. Eng. J. 2023, 454, 140148.

  • 135.

    Qu, G.; Jia, P.; Tang, S.; et al. Enhanced peroxymonosulfate activation via heteroatomic doping defects of pyridinic and pyrrolic N in 2D N-doped carbon nanosheets for BPA degradation. J. Hazard. Mater. 2024, 461, 132626.

  • 136.

    Wang, Y.; Zhang, Z.; Yin, Z.; et al. Adsorption and catalysis of peroxymonosulfate on carbocatalysts for phenol degradation: The role of pyrrolic-nitrogen. Appl. Catal. B Environ. 2022, 319, 121891.

  • 137.

    Yan, S.; Chen, X.; Yang, Y.; et al. Peroxymonosulfate activation by N-doped 3D graphene from spent lithium-ion batteries for organic pollutants degradation: An insight into the degradation mechanism. Chem. Eng. J. 2024, 484, 149379.

  • 138.

    Liu, S.; Pan, Q.; Li, J.; et al. Enhanced mediated electron transfer pathway of peroxymonosulfate activation dominated with graphitic-N for the efficient degradation of various organic contaminants in multiple solutions. ACS EST Water 2022, 2, 817–829.

  • 139.

    Li, X.; Chen, X.; Yan, Y.; et al. Nitrogen-doped graphene for tetracycline removal via enhancing adsorption and non-radical persulfate activation. Environ. Res. 2023, 235, 116642.

  • 140.

    Zhen, Y.; Zhu, S.; Sun, Z.; et al. Identifying the persistent free radicals (PFRs) formed as crucial metastable intermediates during peroxymonosulfate (PMS) activation by N-doped carbonaceous materials. Environ. Sci. Technol. 2021, 55, 9293–9304.

  • 141.

    Duan, X.; Ao, Z.; Sun, H.; et al. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl. Mater. Interfaces 2015, 7, 4169–4178. https://doi.org/10.1021/am508416n.

  • 142.

    Xie, J.; Zhang, L.; Luo, X.; et al. Sulfur anchored on N-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation: Nonradical pathway mechanism, performance and biotoxicity. Chem. Eng. J. 2023, 457, 141149. https://doi.org/10.1016/j.cej.2022.141149.

  • 143.

    Liu, B.; Guo, W.; Wang, H.; et al. B-doped graphitic porous biochar with enhanced surface affinity and electron transfer for efficient peroxydisulfate activation. Chem. Eng. J. 2020, 396, 125119. https://doi.org/10.1016/j.cej.2020.125119.

  • 144.

    Qi, F.; Zeng, Z.; Wen, Q.; et al. Enhanced organics degradation by three-dimensional (3D) electrochemical activation of persulfate using sulfur-doped carbon particle electrode: The role of thiophene sulfur functional group and specific capacitance. J. Hazard. Mater. 2021, 416, 125810.

  • 145.

    Chen, X.; Zhou, Y.; He, J.; et al. Elevated efficiency in tartrazine removal from wastewater through boron-doped biochar: Enhanced adsorption and persulfate activation. Biochar 2024, 6, 79.

  • 146.

    Ye, F.; Sun, W.; Pang, K.; et al. Coupling of sulfur and boron in carbonaceous material to strengthen persulfate activation for antibiotic degradation: Active sites, mechanism, and toxicity assessment. Chin. Chem. Lett. 2023, 34, 107755. https://doi.org/10.1016/j.cclet.2022.107755.

  • 147.

    Wang, S.; Wang, J. High efficient activation of peroxymonosulfate by Co9S8 anchored in N, S, O co-doped carbon composite for degradation of sulfamethoxazole: Effect of sulfur precursor and sulfur doping content. Chem. Eng. J. 2022, 434, 134824.

  • 148.

    Ede, S.R.; Luo, Z. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: A comprehensive review. J. Mater. Chem. A 2021, 9, 20131–20163.

  • 149.

    Gomathi Devi, L.; Narasimha Murthy, B. Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light. Catal. Lett. 2008, 125, 320–330.

  • 150.

    Nie, C.; Dai, Z.; Liu, W.; et al. Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: Boron–nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example. Environ. Sci. Nano 2020, 7, 1899–1911. 

  • 151.

    Kang, J.; Duan, X.; Wang, C.; et al. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chem. Eng. J. 2018, 332, 398–408. https://doi.org/10.1016/j.cej.2017.09.102.

  • 152.

    Yan, Y.; Yang, Q.; Shang, Q.; et al. Ru doped graphitic carbon nitride mediated peroxymonosulfate activation for diclofenac degradation via singlet oxygen. Chem. Eng. J. 2022, 430, 133174. 

  • 153.

    Wang, S.Z.; Wang, J.L. Active site evolution in cobalt-based catalysts for intensifying water purification: from single-atom to diatomic configurations. Small Methods 2025, 9, e01565. 

  • 154.

    Miao, F.; Yue, X.; Cheng, C.; et al. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification. Water Res. 2022, 227, 119346.

  • 155.

    Li, L.; Zhao, J.; Zhao, X.; et al. Insight into the mechanism of peracetic acid activation by corn straw-derived biochar as efficient green activator mediating electron transfer: Crucial role of carbonyl functional group. Sep. Purif. Technol. 2025, 354, 129005.

  • 156.

    Wang, M.; Tang, Y.; Wang, J.; et al. Promoted peroxydisulfate activation by nitrogen-doped carbon embedding iron on a nickel foam cathode: Performance, mechanism and relationship between CO and 1O2 generation. Chem. Eng. J. 2023, 460, 141638.

  • 157.

    Peng, J.; Wu, E.; Wang, N.; et al. Removal of sulfonamide antibiotics from water by adsorption and persulfate oxidation process. J. Mol. Liq. 2019, 274, 632–638.

  • 158.

    Nie, C.; Dai, Z.; Wan, L.; et al. Interfacial electric field tuning carbon-catalyzed persulfate activation toward a maneuverable oxidation pathway for enhanced removal of Bisphenol A. ACS EST Water 2023, 3, 3004–3014.

  • 159.

    Forouzesh, M.; Ebadi, A.; Aghaeinejad-Meybodi, A.; et al. Transformation of persulfate to free sulfate radical over granular activated carbon: Effect of acidic oxygen functional groups. Chem. Eng. J. 2019, 374, 965–974. https://doi.org/10.1016/j.cej.2019.05.220.

  • 160.

    Wang, S.; Wang, J. Nitrogen doping sludge-derived biochar to activate peroxymonosulfate for degradation of sulfamethoxazole: Modulation of degradation mechanism by calcination temperature. J. Hazard. Mater. 2021, 418, 126309.

  • 161.

    Zhang, L.; Lin, C.Y.; Zhang, D.; et al. Guiding principles for designing highly efficient metal-free carbon catalysts. Adv. Mater. 2019, 31, 1805252.

  • 162.

    Li, W.; Orozco, R.; Camargos, N.; et al. Mechanisms on the impacts of alkalinity, pH, and chloride on persulfate-based groundwater remediation. Environ. Sci. Technol. 2017, 51, 3948–3959.

  • 163.

    Li, P.; Jiao, Y.; Ruan, Y.; et al. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts. Nat. Commun. 2023, 14, 6936.

  • 164.

    Duan, X.; Sun, H.; Kang, J.; et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. Acs Catal. 2015, 5, 4629–4636.

  • 165.

    Fagan, W.P.; Villamena, F.A.; Zweier, J.L.; et al. In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate. Environ. Sci. Technol. 2022, 56, 3729–3738.

  • 166.

    Duan, X.; Indrawirawan, S.; Kang, J.; et al. Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. Catal. Today 2020, 355, 319–324.

  • 167.

    Koper, M.T.M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 2013, 4, 2710–2723.

  • 168.

    Liang, C.; Su, H.-W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562.

  • 169.

    Szabó, T.; Tombácz, E.; Illés, E.; et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 2006, 44, 537–545.

  • 170.

    Wacławek, S.; Lutze, H.V.; Sharma, V.K.; et al. Revisit the alkaline activation of peroxydisulfate and peroxymonosulfate. Curr. Opin. Chem. Eng. 2022, 37, 100854.

  • 171.

    Luo, Y.; He, G.; Zhu, Y.; et al. Graphdiyne-mediated non-radical activation originate fast electron transfer for efficient organics removal. Chem. Eng. J. 2025, 509, 161457.

  • 172.

    Bandosz, T.J. Surface chemistry of carbon materials. In Carbon Materials for Catalysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 45–92.

  • 173.

    Mubita, T.M.; Dykstra, J.E.; Biesheuvel, P.M.; et al. Selective adsorption of nitrate over chloride in microporous carbons. Water Res. 2019, 164, 114885.

  • 174.

    Feng, H.; Li, X.; Xing, Y.; et al. Adsorption of CO32−/HCO3− on a quartz surface: Cluster formation, pH effects, and mechanistic aspects. Phys. Chem. Chem. Phys. 2023, 25, 7951–7964. 

  • 175.

    Patra, S.G.; Mizrahi, A.; Meyerstein, D. The role of carbonate in catalytic oxidations. Acc. Chem. Res. 2020, 53, 2189–2200. 

  • 176.

    Wu, X.; Radovic, L.R. Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus. Carbon 2006, 44, 141–151.

  • 177.

    Jia, J.; Liu, D.; Tian, J.; et al. Visible-light-excited humic acid for peroxymonosulfate activation to degrade bisphenol A. Chem. Eng. J. 2020, 400, 125853. 

  • 178.

    Wang, S.; Wang, J. Synergistic effect of PMS activation by Fe0@Fe3O4 anchored on N, S, O co-doped carbon composite for degradation of sulfamethoxazole. Chem. Eng. J. 2022, 427, 131960.

  • 179.

    Ma, J.; Zhang, S.; Duan, X.; et al. Catalytic oxidation of sulfachloropyridazine by MnO2: Effects of crystalline phase and peroxide oxidants. Chemosphere 2021, 267, 129287. 

  • 180.

    Luo, D.; Lin, H.; Li, X.; et al. The dual role of natural organic matter in the degradation of organic pollutants by persulfate-based advanced oxidation processes: A mini-review. Toxics 2024, 12, 770.

  • 181.

    Guo, J.; Wang, Y.; Shang, Y.; et al. Fenton-like activity and pathway modulation via single-atom sites and pollutants comediates the electron transfer process. Proc. Natl. Acad. Sci. USA 2024, 121, e2313387121.

  • 182.

    Cheng, C.; Ren, W.; Miao, F.; et al. Generation of FeIV = O and its contribution to Fenton-like reactions on a single-atom iron− N− C catalyst. Angew. Chem. Int. Ed. 2023, 62, e202218510.

  • 183.

    Ren, W.; Xiong, L.; Yuan, X.; et al. Activation of peroxydisulfate on carbon nanotubes: Electron-transfer mechanism. Environ. Sci. Technol. 2019, 53, 14595–14603.

  • 184.

    Jia, W.; Li, Y.; Chen, C.; et al. Unveiling the fate of metal leaching in bimetal-catalyzed Fenton-like systems: Pivotal role of aqueous matrices and machine learning prediction. J. Hazard. Mater. 2024, 477, 135291.

  • 185.

    Ma, S.; Liu, Z.-P. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: Current status and future. ACS Catal. 2020, 10, 13213–13226.

Share this article:
How to Cite
Wang, S.; Wang, J. Generation, Detection and Regulation Strategies of Reactive Species in Persulfate Activation Systems. Environmental and Microbial Technology 2026, 1 (1), 8. https://doi.org/10.53941/emt.2026.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.