- 1.
- 2.
- 3.
- 4.
Zou, X.X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.
- 5.
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.
- 6.
Ong, W.J.; Tan, L.L.; Ng, Y.H.; et al. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329.
- 7.
Ran, L.; Li, Z.W.; Ran, B.; et al. Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO2 Photoreduction. J. Am. Chem. Soc. 2022, 144, 17097–17109.
- 8.
Chong, M.N.; Jin, B.; Chow, C.W.K.; et al. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027.
- 9.
Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Appl. Catal., B 2004, 49, 1–14.
- 10.
Houas, A.; Lachheb, H.; Ksibi, M.; et al. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 2001, 31, 145–157.
- 11.
Li, S.J.; Cai, M.J.; Liu, Y.P.; et al. S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 2022, 43, 2652–2664.
- 12.
Ma, Y.; Wang, X.L.; Jia, Y.S.; et al. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chem. Rev. 2014, 114, 9987–10043.
- 13.
Pelaez, M.; Nolan, N.T.; Pillai, S.C.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal., B 2012, 125, 331–349.
- 14.
Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 1‒17.
- 15.
Jiao, Y.; Zheng, Y.; Jaroniec, M.T.; et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
- 16.
Ma, F.R.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15.
- 17.
Lee, K.; Jing, Y.X.; Wang, Y.Q.; et al. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 2022, 6, 635–652.
- 18.
Qiao, J.L.; Liu, Y.Y.; Hong, F.; et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.
- 19.
Voiry, D.; Yamaguchi, H.; Li, J.W.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.
- 20.
Chatenet, M.; Pollet, B.G.; Dekel, D.R.; et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762.
- 21.
Liu, S.W.; Li, C.Z.; Zachman, M.J.; et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nature Energy 2022, 7, 652–663.
- 22.
Xie, H.P.; Zhao, Z.Y.; Liu, T.; et al A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673‒678.
- 23.
Chen, J.; Zhang, L.C.; Li, J.; et al. High-efficiency overall alkaline seawater splitting: using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mat. Chem. A 2023, 11, 1116–1122.
- 24.
Zhao, H.B.; Yu, R.F.; Ma, S.C.; et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat. Catal. 2022, 5, 818–831.
- 25.
Amalia, F.R.; Takashima, M.; Ohtani, B. Are you still using organic dyes? Colorimetric formaldehyde analysis for true photocatalytic-activity evaluation. Chem. Commun. 2022, 58, 11721–11724.
- 26.
Yan, X.; Ohno, T.; Nishijima, K.; et al. Is Methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett. 2006, 429, 606–610.
- 27.
Losse, S.; Vos, J.G.; Rau, S. Catalytic hydrogen production at cobalt centres. Coordin. Chem. Rev. 2010, 254, 2492–2504.
- 28.
Mohaghegh, N.; Endo-Kimura, M.; Wang, K.; et al. Apatite-coated Ag/AgBr/TiO2 nanocomposites: Insights into the antimicrobial mechanism in the dark and under visible-light irradiation. Appl. Surf. Sci. 2023, 617, 156574.
- 29.
Wang, K.L.; Wei, Z.S.; Ohtani, B.; et al. Interparticle electron transfer in methanol dehydrogenation on platinum-loaded titania particles prepared from P25. Catal. Today 2018, 303, 327–333.
- 30.
Zaleska, A.; Sobczak, J.W.; Grabowska, E.; et al. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal., B 2008, 78, 92–100.
- 31.
Wysocka, I.; Hupka, J.; Rogala, A. Catalytic Activity of Nickel and Ruthenium-Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process. Catalysts 2019, 9, 540.
- 32.
Ohtani, B.; Mahaney, O.O.P.; Amano, F.; et al. What Are Titania Photocatalysts?-An Exploratory Correlation of Photocatalytic Activity with Structural and Physical Properties. J. Adv. Oxid. Technol. 2010, 13, 247–261.
- 33.
Ghosh, S.; Kouame, N.A.; Ramos, L.; et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505–511.
- 34.
Kolen'ko, Y.V.; Churagulov, B.R.; Kunst, M.; et al. Photocatalytic properties of titania powders prepared by hydrothermal method. Appl. Catal., B 2004, 54, 51–58.
- 35.
Pichat, P.; Mozzanega, M.N.; Disdier, J.; et al. Platinum content and temperature effects on the photocatalytic hydrogen production from aliphatic alcohols over platinum/titanium dioxide. Nouv. J. Chim. 1982, 6, 559–64.
- 36.
Fujishima, A.; Zhang, X.T.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.
- 37.
Rau, S.; Schafer, B.; Gleich, D.; et al. A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. Angew. Chem. Int. Edit. 2006, 45, 6215–6218.
- 38.
Kowalski, D.; Mallet, J.; Thomas, S.; et al. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries. J. Power Sources 2017, 361, 243–248.
- 39.
Putra, R.P.; Horino, H.; Rzeznicka, I.I. An Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline Solutions Derived from a Copper Chelate Polymer via In Situ Electrochemical Transformation. Catalysts 2020, 10, 233.
- 40.
Kowalska, E.; Juodkazis, S.; Henkiel, P.; et al. Site-Selective Au+ Electroreduction in Titania Nanotubes for Electrochemical and Plasmonic Applications. ACS Appl. Nano Mater. 2022, 5, 7696–7703.
- 41.
Wang, D.; Gu, J.; Wang, H.; et al. Promoting photoelectrochemical water oxidation of BiVO4 photoanode via Co-MOF-derived heterostructural cocatalyst. Appl. Surf. Sci. 2023, 619, 156710.
- 42.
Kowalska, E.; Mahaney, O.O.P.; Abe, R.; et al. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344–2355.
- 43.
Kowalska, E.; Abe, R.; Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 2009, 2, 241–243.
- 44.
Wei, Z.; Janczarek, M.; Endo, M.; et al. Noble metal-modified faceted anatase titania photocatalysts: Octahedron versus decahedron. Appl. Catal., B 2018, 237, 574–587.
- 45.
Zheng, S.; Wei, Z.; Yoshiiri, K.; et al. Titania modification with ruthenium(II) complex and gold nanoparticles for photocatalytic degradation of organic compounds. Photochem. Photobiol. Sci. 2016, 15, 69–79.
- 46.
Raja Mogan, T.; Zhang, J.; Ng, L.S.; et al. Harmonizing Plasmonic and Photonic Effects to Boost Photocatalytic H2 Production over 550 mmol ⋅ h−1 ⋅ gcat−1. Angew. Chem. Int. Ed. 2024, 63, e202401277.
- 47.
Kowalski, D.; Kim, D.; Schmuki, P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 2013, 8, 235–264.
- 48.
Raja-Mogan, T.; Lehoux, A.; Takashima, M.; et al. Slow photon-induced enhancement of photocatalytic activity of gold nanoparticle-incorporated titania in-verse opal. Chem. Lett. 2021, 50, 711–713.
- 49.
Curti, M.; Mendive, C.B.; Grela, M.A.; et al. Stopband tuning of TiO2 inverse opals for slow photon absorption. Mater. Res. Bull. 2017, 91, 155–165.
- 50.
Amano, F.; Prieto-Mahaney, O.O.; Terada, Y.; et al. Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity. Chem. Mater. 2009, 21, 2601–2603.
- 51.
Hori, H.; Takashima, M.; Takase, M.; et al. Kinetic analysis supporting multielectron reduction of oxygen in bismuth tungstate-photocatalyzed oxidation of organic compounds. Catal. Today 2018, 313, 218–223.
- 52.
Hori, H.; Takashima, M.; Takase, M.; et al. Pristine Bismuth-tungstate Photocatalyst Particles Driving Organics Decomposition through Multielectron Reduction of Oxygen. Chem. Lett. 2017, 46, 1376–1378.
- 53.
Bielan, Z.; Kubiak, A.; Karczewski, J.; et al. Organic pollutants photodegradation increment with use of TiO2 nanotubes decorated with transition metals after pulsed laser treatment. Mater. Sci. Semicond. Process. 2024, 177, 108378.
- 54.
Dudziak, S.; Karczewski, J.; Ostrowski, A.; et al. Fine-Tuning the Photocatalytic Activity of the Anatase {1 0 1} Facet through Dopant-Controlled Reduction of the Spontaneously Present Donor State Density. ACS Mater. Au 2024.
- 55.
Ketwong, P.; Takashima, M.; Nitta, A.; et al. Hydrothermal synthesis and photocatalytic activities of stabilized bismuth vanadate/bismuth tungstate composites. J. Environ. Chem. Eng. 2018, 6, 2048–2054.
- 56.
Fattakhova-Rohlfing, D.; Zaleska, A.; Bein, T. Three-Dimensional Titanium Dioxide Nanomaterials. Chem. Rev. 2014, 114, 9487–9558.
- 57.
Wysocka, I.; Markowska-Szczupak, A.; Szweda, P.; et al. Gas-phase removal of indoor volatile organic compounds and airborne microorganisms over mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide nanocomposites. Indoor Air 2019, 29, 979–992.
- 58.
Zaleska, A.; Hupka, J.; Wiergowski, M.; et al. Photocatalytic degradation of lindane, p,p'-DDT and methoxychlor in an aqueous environment. J. Photochem. Photobio., A 2000, 135, 213–220.
- 59.
Alfano, O.M.; Bahnemann, D.; Cassano, A.E.; et al. Photocatalysis in water environments using artificial and solar light. Catal. Today 2000, 58, 199–230.
- 60.
Chen, S.; Li, J.; Zhou, W.; et al. Engineering defects in heterogeneous catalytic persulfates for water purification: An overlooked role? Coord. Chem. Rev. 2024, 507, 215749.
- 61.
Wysocka, I.; Gebicki, J.; Namiesnik, J. Technologies for deodorization of malodorous gases. ESPR 2019, 26, 9409–9434.
- 62.
Basaleh, A.S.; Khedr, T.M.; Mohamed, R.M. Construction of mesoporous PdO/YVO4 p-n heterojunction wrinkled-nanosheets fostering electron transfer for boosted photocatalytic atrazine degradation under visible light. Mater. Sci. Semicond. Process. 2024, 179, 108467.
- 63.
Wysocka, I.; Karczewski, J.; Maciejewski, M.L.; et al. Ni-WC/Al2O3 and Ni-WC/MgWO4/MgAl2O4 catalysts for resource recovery via pyrolysis combined with the dry reforming of plastics (PCDR). J. Environ. Chem. Eng. 2023, 11, 111298.
- 64.
Wysocka, I.; Czaplicka, N.; Pawelczyk, E.; et al. Novel sugar-based nickel-tungsten carbide catalysts for dry reforming of hydrocarbons. JIEC 2023, 124, 431–446.
- 65.
Rtimi, S.; Dionysiou, D.D.; Pillai, S.C.; et al. Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Appl. Catal., B 2019, 240, 291–318.
- 66.
Markowska-Szczupak, A.; Ulfig, K.; Morawski, W.A. The application of titanium dioxide for deactivation of bioparticulates: An overview. Catal. Today 2011, 161, 249–257.
- 67.
Khedr, T.M.; El-Sheikh, S.M.; Hakki, A.; et al. Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. J. Photoch. Photobio., A 2017, 346, 530–540.
- 68.
Fujishima, A.; Zhang, X.; Tryk, D.A. Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy 2007, 32, 2664–2672.
- 69.
Chen, S.; Wang, Y.; Li, Y.; et al. BaSnO3-SnO2 heterojunction mesoporous photoanode for quantum dot-sensitized solar cells. Mater. Res. Bull. 2023, 167, 112431.
- 70.
Li, X.L.; Li, B.C.; Chang, J.H.; et al. (C6H5CH2NH3)2CuBr4: A Lead-Free, Highly Stable Two-Dimensional Perovskite for Solar Cell Applications. ACS Appl. Energy Mater. 2018, 1, 2709–2716.
- 71.
Bielan, Z.; Kowalska, E.; Dudziak, S.; et al. Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core–shell photocatalysts with UV/Vis light activity and magnetic separability. Catal. Today 2021, 361, 198–209.
- 72.
Zielinska-Jurek, A.; Bielan, Z.; Wysocka, I.; et al. Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water. J. Environ. Manage. 2017, 195, 157–165.
- 73.
Bielan, Z.; Dudziak, S.; Kubiak, A.; et al. Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis. Appl. Sci. 2021, 11, 10160.
- 74.
Huang, K.; Xu, W.; Zheng, S.; et al. Coupling photothermal and piezoelectric effect in Bi4Ti3O12 for enhanced photodegradation of tetracycline hydrochloride. Opt. Mater. 2023, 145, 114352.
- 75.
Pichat, P. A Brief Survey of the Potential Health Risks of TiO2 Particles and TiO2-Containing Photocatalytic or Non-Photocatalytic Materials. J. Adv. Oxid. Technol. 2010, 13, 238–246.
- 76.
Markowska-Szczupak, A.; Endo-Kimura, M.; Paszkiewicz, O.; et al. Are titania photocatalysts and titanium implants safe? Review on the toxicity of titanium compounds. Nanomaterials 2020, 10, 2065.