• Open Access
  • Review

Review of g-C3N4-Based Photocatalytic Systems: Design Strategies toward Sustainable Hydrogen Production

  • Yuvaraj M. Hunge 1,*,†,   
  • Anuja A. Yadav 2,†,   
  • Sutripto Majumder  3,   
  • Abdel Hamid I. Mourad  4,   
  • Akira Fujishima  1,5,   
  • Chiaki Terashima  1,6

Received: 26 Aug 2025 | Revised: 12 Nov 2025 | Accepted: 13 Nov 2025 | Published: 19 Nov 2025

Abstract

With growing concerns over the global energy crisis and environmental degradation, there is an urgent push toward cleaner and more sustainable energy sources. Among the promising solutions, photocatalytic water splitting has emerged as an eco-friendly method for hydrogen production by harnessing sunlight. However, traditional photocatalysts like TiO2, ZnO, and CdS face notable limitations, such as poor visible light absorption, fast electron-hole recombination, and stability issues under long-term use. Graphitic carbon nitride (g-C3N4), a metal-free semiconductor with a two-dimensional structure, has gained attention due to its favorable band gap, good thermal and chemical stability, and ease of synthesis. Still, its photocatalytic performance in its pure form remains limited, mainly due to low charge separation efficiency and insufficient surface activity. To overcome these drawbacks, researchers have explored a variety of modification strategies such as tuning the morphology, doping with elements, coupling with co-catalysts, and building heterojunctions. These approaches have shown great potential in improving light absorption, charge carrier mobility, and the overall hydrogen evolution efficiency. This review highlights recent progress in developing and modifying g-C3N4 based materials for photocatalytic hydrogen production. It explores how different structural and electronic modifications impact performance and delves into the mechanisms behind these improvements. Challenges such as long-term stability, cost-effectiveness, and scalability are discussed, along with potential strategies to address them. Looking ahead, more focus is needed on large-scale synthesis, durability in real-world conditions, and integrating these materials into practical systems to truly unlock the potential of g-C3N4 in sustainable hydrogen production.

References 

  • 1.
    Liao, G.; Li, C.; Liu, S.Y.; et al. Emerging frontiers of Z-scheme photocatalytic systems. Trends Chem. 2022, 4, 111–127.
  • 2.
    Reddy, P.B.; Ravindran, E.; Rosaiah, P.; et al. Hierarchical copper indium sulfide and MXene composites: Synergistic effects for enhanced lithium-ion battery performance and photocatalytic hydrogen production. Ceram. Int. 2025, 51, 51723–51733.
  • 3.
    Yadav, A.A.; Hunge, Y.M.; Dhodamani, A.G.; et al. Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production. Catalysts 2023, 13, 716.
  • 4.
    Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; et al. Role of nanotechnology in photocatalysis application. Recent Pat. Nanotechnol. 2023, 17, 5–7.
  • 5.
    Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; et al. Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic hydrogen production. J. Photochem. Photobio. A Chem. 2023, 434, 114250.
  • 6.
    Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; et al. Facile synthesis of multitasking composite of Silver nanoparticle with Zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J. Alloys Compd. 2022, 928, 167133.
  • 7.
    Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Visible Light-Responsive CeO2/MoS2 Composite for Photocatalytic Hydrogen Production. Catalysts 2022, 12, 1185.
  • 8.
    Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf. Interf. 2021, 24, 101075.
  • 9.
    Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Spongy ball-like copper oxide nanostructure modified by reduced graphene oxide for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 2021, 133, 111026.
  • 10.
    Kumar, Y.A.; Kalla RM, N.; Al-Sehemi, A.G.; et al. Emerging group-VA 2D materials: Antimonene bismuthene for nanoelectronics energy storage. J. Alloys Compd. 2025, 1044, 184331.
  • 11.
    Hunge, Y.M.; Yadav, A.A.; Mathe, V.L. Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 2019, 731, 136582.
  • 12.
    Liao, G.; Li, C.; Li, X.; Fang, B. Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Rep. Phys. Sci. 2021, 2, 100355.
  • 13.
    Jia, X.; Song, Z.Q.; Zhang, J.Q.; et al. A ternary Z-scheme heterojunction composite CdS@Ce-MOF/g-C3N4 for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2025, 139, 25–35.
  • 14.
    Majumder, S.; Yadav, A.A.; Gomez, L.A.M.; et al. Unlocking clean energy: Exploring FeVO4 nanopebble thin film as an outstanding photoanode for efficient water splitting. J. Alloys. Compd. 2024, 1002, 175391.
  • 15.
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
  • 16.
    Majumder, S.; Yadav, A.A.; Palanisamy, A.K.; et al. Design and optimization of FeVO4/Fe2TiO5 heterojunction photoanode for efficient photoelectrochemical water splitting. Ceram. Int. 2025, 51, 2536–2546.
  • 17.
    Xiao, M.; Luo, B.; Wang, S.C.; et al. Solar energy conversion on g-C3N4 photocatalyst: Light harvesting charge separation surface kinetics. J. Energy Chem. 2018, 27, 1111–1123.
  • 18.
    Tan, M.; Yu, C.; Li, J.; et al. Engineering of g-C3N4-based photocatalysts to enhance hydrogen evolution. Adv. Colloid Interface Sci. 2021, 295, 1024, 88.
  • 19.
    Chen, H.; Fan, Z.; Zhang, Z.-C.; et al. Synthesis and modification of g-C3N4 semiconductor catalysts for photocatalytic hydrogen evolution: A review. Prog. Nat. Sci. Mater. Int. 2025, 35, 449–468.
  • 20.
    Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80.
  • 21.
    Gomari, A.K.; Hafeez, Y.H.; Mohammed, J.; et al. A recent development future prospect of g-C3N4-based photocatalyst for stable hydrogen (H2) generation via photocatalytic water-splitting. Int. J. Hydrogen Energy 2024, 85, 598–624.
  • 22.
    Zhang, Y.; Wen, D.; Sun, W.; et al. State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chin. J. Struct. Chem. 2024, 43, 100469.
  • 23.
    Lin, T.H.; Chang, Y.H.; Chiang, K.P.; et al. Nanoscale multidimensional Pd/TiO₂/g-C3N4 catalyst for efficient solar-driven photocatalytic hydrogen production. Catalysts 2021, 1, 59.
  • 24.
    Ma, S.H.; Wang, W.X. Preparation and photocatalytic hydrogen evolution of g-C3N4/ZnO composite. E3S Web. Conf. 2020, 165, 05007.
  • 25.
    Zahra, M.; Farshad, Y.; Kourosh, H.T.; et al. Photocatalytic hydrogen evolution under visible light using MoS2/g-C3N4 nano-photocatalysts. Catal. Lett. 2023, 154, 1255–1269.
  • 26.
    Chen, Q.; Huang, J.; Chu, D.; et al. Inhibiting photogenerated electron-hole recombination in double metal phosphides decorated g-C3N4 nanosheets by work function gradient for improved hydrogen production. Int. J. Hydrogen Energy 2024, 90, 1023–1030.
  • 27.
    Bao, T.; Li, X.; Li, S.; et al. Recent advances of graphitic carbon nitride (g-C3N4) based materials for photocatalytic applications: A review. Nano. Mater. Sci. 2025, 7, 145–168.
  • 28.
    Bhanderi, D.; Lakhani, P.; Modi, C.K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review. RSC Sustain. 2024, 2, 265–287.
  • 29.
    Ma, D.D.; Zhang, Z.M.; Zhou, Y.J.; et al. The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coord. Chem. Rev. 2024, 500, 215489.
  • 30.
    Kamble, B.B.; Sharma, K.K.; Sonawane, K.D.; et al. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv. Colloid. Interface. Sci. 2024, 333, 103284.
  • 31.
    Xie, Z.B.; Wang, C.; Wu, F.Q.; et al. Loading silver nanoclusters onto g-C3N4 by formamide-assisted in-situ strategy to achieve efficient photocatalytic water splitting for hydrogen production. J Photochem. Photobiol. Chem. 2025, 462, 116275.
  • 32.
    Dankawu, U.; Hafeez, Y.H.; Ndikilar, E.C.; et al. Recent advances perspective of g-C3N4-based materials for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting. Int. J. Hydrogen Energy 2024, 67, 1218–1242.
  • 33.
    Mamba, G.; Mishra, A. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377.
  • 34.
    Kornel, K.; Marta, K.; Artur, K. Two-stage closed sinus lift: A new surgical technique for maxillary sinus floor augmentation. Cell Tissue Bank 2015, 16, 579–585.
  • 35.
    Khac, B.T.; Nguyen, T.L.; Pham, V.V. Review of g-C3N4-based photocatalysts for Amoxicillin photocatalytic degradation. J. Water Proc. Eng. 2024, 67, 106257.
  • 36.
    Gao, R.-H.; Ge, Q.; Jiang, N.; et al. Graphitic carbon nitride (g-C3N4)-based photocatalytic materials for hydrogen evolution. Front. Chem. 2022, 10, 1048504. https://doi.org/10.3389/fchem.2022.1048504.
  • 37.
    Wang, W.; Yu, J.C.; Shen, Z.; et al. g-C3N4 quantum dots: Direct synthesis, upconversion properties and photocatalytic application. Chem. Commun. 2014, 50, 10148–10150.
  • 38.
    Bashir, H.; Yi, X.Y.; Yuan, J.L.; et al. Highly ordered TiO2 nanotube arrays embedded with g-C3N4 nanorods for enhanced photocatalytic activity. J. Photochem. Photobiol. A Chem. 2019, 382, 111930.
  • 39.
    Shi, Y.X.; Li, L.L.; Sun, H.R.; et al. Engineering ultrathin oxygen-doped g-C3N4 nanosheet for boosted photoredox catalytic activity based on a facile thermal gas-shocking exfoliation effect. Sep. Purif. Technol. 2022, 292, 121038.
  • 40.
    Chen, X.; Shi, R.; Chen, Q.; et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 2019, 59, 644–650.
  • 41.
    Khan, A.M.; Mutahir, S.; Shaheen, I.; et al. Recent advances over the doped g-C3N4 in photocatalysis: A review. Coord. Chem. Rev. 2025, 522, 216227.
  • 42.
    Yang, S.; Vanish, K.; Ki-Hyun, K. The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Separ. Purif. Technol. 2023, 305, 122413.
  • 43.
    Nagar, P.O.; Chouhan, N. Non-metal doped graphitic carbon nitride (g-C3N4): Prospects review on hydrogen generation via water splitting. Int. J. Hydrogen Energy 2024, 96, 533–565.
  • 44.
    Yue, D.; Raj, M.N.S.; Kumar, V.J.; et al. History of metal free g-C3N4 photocatalysts for hydrogen production. Diam. Relat. Mater. 2024, 146, 111228.
  • 45.
    Zhan, W.; Yang, N.; Zhou, T.; et al. Boron doping induced photocatalytic active site shift in ultrathin porous g-C3N4 for significant boosting H2 production. Int. J. Hydrogen Energy 2024, 92, 907–916.
  • 46.
    Cao, J.; Jing, X.L.; Ma, Z.Y.; et al. One-step synthesis of C quantum dots/C doped g-C3N4 photocatalysts for visible-light-driven H2 production from water splitting. J. Phys. Appl. Phys. 2022, 55, 444008.
  • 47.
    Wang, W.K.; Wei, S.; Hu, Y.; et al. Fast carrier separation induced by the metal-like O-doped MoS2/CoS cocatalyst for achieving photocatalytic and photothermal hydrogen production. Chem. Eng. J. 2024, 493, 152516.
  • 48.
    Khursheed, A.; Mohd, Q.K.; Ali, A.; et al. Sulfur-doped graphitic-carbon nitride (S@g-C3N4) as bi-functional catalysts for hydrazine sensing and hydrogen production applications. Synth. Met. 2022, 288, 117100.
  • 49.
    Hussain, A.S.; Hu, J.; Liu, H.; et al Preparation of C-doped g-C3N4 by Co-polycondensation of melamine sucrose for improved photocatalytic H2 evolution. Int. J. Hydrogen Energy 2024, 87, 705–712.
  • 50.
    Leila, H.; Clement, M.; Valerie, C.; et al. Influence of low level of non-metal doping on g-C3N4 performance for H2 production from water under solar light irradiation. Int. J. Hydrogen Energy 2024, 51, 285–300.
  • 51.
    Yang, X.; Tian, Z.; Chen, Y.F.; et al. In situ synthesis of 2D ultrathin cobalt doped g-C3N4 nanosheets enhances photocatalytic performance by accelerating charge transfer. J. Alloys. Compd. 2021, 859, 157754.
  • 52.
    Zhang, L.S.; Ding, N.; Hashimoto, M.; et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano. Res. 2018, 11, 2295–2309.
  • 53.
    Gao, L.F.; Wen, T.; Xu, J.Y.; et al. Iron-doped carbon nitride-type polymers as homogeneous organocatalysts for visible light-driven hydrogen evolution. Acs. Appl. Mater. Inter. 2016, 8, 617–624.
  • 54.
    Song, X.F.; Tao, H.; Chen, L.X.; et al. Synthesis of Fe/g-C3N4 composites with improved visible light photocatalytic activity. Mater. Lett. 2014, 116, 265–267.
  • 55.
    Wan, Y.; Wang, H.; Liu, J.; et al. Removal of polyethylene terephthalate plastics waste via Co–CeO2 photocatalyst–activated peroxymonosulfate strategy. Chem. Eng. J. 2024, 479, 147781.
  • 56.
    Xiong, T.; Cen, W.L.; Zhang, Y.X.; et al. Bridging the g-C3N4 Interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.
  • 57.
    Zhou, Y.Y.; Zhang, L.; Wang, W.Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.
  • 58.
    Li, H.P.; Xia, Y.G.; Liang, Z.W.; et al. Energy band engineering of polymeric carbon nitride with indium doping for high enhancement in charge separation and photocatalytic performance. ACS Appl. Energy Mater. 2020, 3, 377–386.
  • 59.
    Hu, Y.D.; Qu, Y.T.; Zhou, Y.S.; et al. Single Pt atom-anchored C3N4: A bridging Pt-N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021, 412, 128749.
  • 60.
    Tian, H.Y.; Liu, X.; Liang, Z.Q.; et al. Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible near-infrared light. J. Colloid Interface Sci. 2019, 557, 700–708.
  • 61.
    Chen, T.; Quan, W.; Yu, L.; et al. One step synthesis visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts. J. Alloys Compd. 2016, 686, 628–634.
  • 62.
    Ren, W.; Wang, J.; Zheng, X.; et al. Transition metal phosphides (Fe2P, Co2P, and Ni2P) modified CdS nanorods for efficient photocatalytic H2 Evolution. ACS Appl. Nano Mater. 2024, 7, 22137–22146
  • 63.
    Mahzoon, S.; Haghighi, M.; Nowee, S.M. Sonoprecipitation fabrication of enhanced electron transfer Cu(OH)2/g-C3N4 nanophotocatalyst with promoted H2 Production activity under visible light irradiation. Renew. Energy 2020, 150, 91–100.
  • 64.
    Reza, G.M.; Dinh, C.T.; Beland, F.; et al. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187–8208.
  • 65.
    Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mat. 2018, 8, 1701503–1701531.
  • 66.
    Chen, Z.H.; Guo, F.; Sun, H.; et al. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401.
  • 67.
    Fan, J.; Yang, Y.; Liu, J.; et al. Constructed NiS-Mn2SnS4/g-C3N4 dual-stage type-II heterojunction with high-specific-surface-area for synergistically enhanced photocatalytic hydrogen production performance. Fuel 2026, 405, 136702.
  • 68.
    Xu, Z.; Shi, Y.X.; Li, L.L.; et al. Fabrication of 2D/2DZ-scheme highly crystalline carbon nitride/δ-Bi2O3 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline. J. Alloys Compd. 2022, 895, 16266.
  • 69.
    Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486–1503.
  • 70.
    Zhao, S.; Xu, J.; Mao, M.; et al. Protonated g-C3N4 cooperated with Co-MOF doped with Sm to construct 2D/2D heterojunction for integrated dye-sensitized photocatalytic H2 evolution. J. Colloid Interface Sci. 2021, 583, 435–447.
  • 71.
    He, J.; Zou, X.; Dong, Y.; et al. Construction of CoOx/tubular C3N4 Z-scheme heterojunction for synergistically enhanced photocatalytic hydrogen production. Renew. Energy 2026, 256, 124274.
  • 72.
    Xu, Q.; Zhang, L.; Cheng, B.; et al. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.
  • 73.
    Li, Y.; Yang, H.; Li, W.; et al. P-doped ultrathin g-C3N4/In2S3 S-scheme heterojunction enhances photocatalytic hydrogen production and degradation of ofloxacin. Phys. B 2024, 685, 416053.
  • 74.
    Wang, Y.; Lin, H.; Zong, J.; et al. Interface Design of S Scheme Co9S8/Flower-like g-C3N4 van der Waals Heterojunction with Enhanced Photocatalytic Hydrogen Production and Tetracycline Hydrochloride Degradation. Chin. J. Struct. Chem. 2025, 100798. https://doi.org/10.1016/j.cjsc.2025.100798.
  • 75.
    Jo, W.-K.; Selvam, N.C.S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem. Eng. J. 2017, 317, 913–924.
  • 76.
    Ou, M.; Wan, S.; Zhong, Q.; et al. Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int. J. Hydrogen Energy 2017, 42, 27043–27054.
  • 77.
    Sun, S.; Li, J.; Cui, J.; et al. Simultaneously engineering Kdoping exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 778–787.
  • 78.
    Hao, X.; Zhou, J.; Cui, Z.; et al. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl. Catal. B. Environ. 2018, 229, 41–51.
  • 79.
    Zhou, Y.; Zhang, L.; Huang, W.; et al. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 2016, 99, 111–117.
  • 80.
    Li, Y.-P.; Li, F.-T.; Wang, X.-J.; et al. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2017, 42, 28327–28336.
  • 81.
    Jiang, D.; Chen, L.; Xie, J.; et al. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans. 2014, 43, 4878–4885.
  • 82.
    Tan, Y.; Shu, Z.; Zhou, J.; et al. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl. Catal. B. Environ. 2018, 230, 260–268.
  • 83.
    Han, C.; Gao, Y.; Liu, S.; et al. Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity. Int. J. Hydrogen Energy 2017, 42, 22765–22775.
  • 84.
    Huang, Q.-Z.; Wang, J.-C.; Wang, P.-P.; et al. In-situ growth of mesoporous Nb2O5 microspheres on g-C3N4 nanosheets for enhanced photocatalytic H2 evolution under visible light irradiation. Int. J. Hydrogen Energy 2017, 42, 6683–6694.
  • 85.
    Zang, Y.; Li, L.; Li, X.; et al. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277–286.
  • 86.
    Shi, F.; Chen, L.; Xing, C.; et al. ZnS microsphere/g-C3N4 nanocomposite photo-catalyst with greatly enhanced visible light performance for hydrogen evolution: Synthesis and synergistic mechanism study. RSC Adv. 2014, 4, 62223–62229.
  • 87.
    Chen, F.; Yang, H.; Wang, X.; et al. Facile synthesis enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts Chin. J. Catal. 2017, 38, 296–304.
  • 88.
    Hong, J.; Wang, Y.; Wang, Y.; et al. Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. ChemSusChem 2013, 6, 2263–2268.
  • 89.
    Cheng, R.; Fan, X.; Wang, M.; et al. Facile construction of CuFe2O4/g-C3N4 photocatalyst for enhanced visible-light hydrogen evolution. RSC Adv. 2016, 6, 18990–18995.
Share this article:
How to Cite
Hunge, Y. M.; Yadav, A. A.; Majumder , S.; Mourad , A. H. I.; Fujishima , A.; Terashima , C. Review of g-C3N4-Based Photocatalytic Systems: Design Strategies toward Sustainable Hydrogen Production. Energy, Water and Air Catalysis Research 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.