- 1.
Liao, G.; Li, C.; Liu, S.Y.; et al. Emerging frontiers of Z-scheme photocatalytic systems. Trends Chem. 2022, 4, 111–127.
- 2.
Reddy, P.B.; Ravindran, E.; Rosaiah, P.; et al. Hierarchical copper indium sulfide and MXene composites: Synergistic effects for enhanced lithium-ion battery performance and photocatalytic hydrogen production. Ceram. Int. 2025, 51, 51723–51733.
- 3.
Yadav, A.A.; Hunge, Y.M.; Dhodamani, A.G.; et al. Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production. Catalysts 2023, 13, 716.
- 4.
Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; et al. Role of nanotechnology in photocatalysis application. Recent Pat. Nanotechnol. 2023, 17, 5–7.
- 5.
Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; et al. Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic hydrogen production. J. Photochem. Photobio. A Chem. 2023, 434, 114250.
- 6.
Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; et al. Facile synthesis of multitasking composite of Silver nanoparticle with Zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J. Alloys Compd. 2022, 928, 167133.
- 7.
Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Visible Light-Responsive CeO2/MoS2 Composite for Photocatalytic Hydrogen Production. Catalysts 2022, 12, 1185.
- 8.
Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf. Interf. 2021, 24, 101075.
- 9.
Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Spongy ball-like copper oxide nanostructure modified by reduced graphene oxide for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 2021, 133, 111026.
- 10.
Kumar, Y.A.; Kalla RM, N.; Al-Sehemi, A.G.; et al. Emerging group-VA 2D materials: Antimonene bismuthene for nanoelectronics energy storage. J. Alloys Compd. 2025, 1044, 184331.
- 11.
Hunge, Y.M.; Yadav, A.A.; Mathe, V.L. Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 2019, 731, 136582.
- 12.
Liao, G.; Li, C.; Li, X.; Fang, B. Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Rep. Phys. Sci. 2021, 2, 100355.
- 13.
Jia, X.; Song, Z.Q.; Zhang, J.Q.; et al. A ternary Z-scheme heterojunction composite CdS@Ce-MOF/g-C3N4 for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2025, 139, 25–35.
- 14.
Majumder, S.; Yadav, A.A.; Gomez, L.A.M.; et al. Unlocking clean energy: Exploring FeVO4 nanopebble thin film as an outstanding photoanode for efficient water splitting. J. Alloys. Compd. 2024, 1002, 175391.
- 15.
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
- 16.
Majumder, S.; Yadav, A.A.; Palanisamy, A.K.; et al. Design and optimization of FeVO4/Fe2TiO5 heterojunction photoanode for efficient photoelectrochemical water splitting. Ceram. Int. 2025, 51, 2536–2546.
- 17.
Xiao, M.; Luo, B.; Wang, S.C.; et al. Solar energy conversion on g-C3N4 photocatalyst: Light harvesting charge separation surface kinetics. J. Energy Chem. 2018, 27, 1111–1123.
- 18.
Tan, M.; Yu, C.; Li, J.; et al. Engineering of g-C3N4-based photocatalysts to enhance hydrogen evolution. Adv. Colloid Interface Sci. 2021, 295, 1024, 88.
- 19.
Chen, H.; Fan, Z.; Zhang, Z.-C.; et al. Synthesis and modification of g-C3N4 semiconductor catalysts for photocatalytic hydrogen evolution: A review. Prog. Nat. Sci. Mater. Int. 2025, 35, 449–468.
- 20.
Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80.
- 21.
Gomari, A.K.; Hafeez, Y.H.; Mohammed, J.; et al. A recent development future prospect of g-C3N4-based photocatalyst for stable hydrogen (H2) generation via photocatalytic water-splitting. Int. J. Hydrogen Energy 2024, 85, 598–624.
- 22.
Zhang, Y.; Wen, D.; Sun, W.; et al. State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chin. J. Struct. Chem. 2024, 43, 100469.
- 23.
Lin, T.H.; Chang, Y.H.; Chiang, K.P.; et al. Nanoscale multidimensional Pd/TiO₂/g-C3N4 catalyst for efficient solar-driven photocatalytic hydrogen production. Catalysts 2021, 1, 59.
- 24.
Ma, S.H.; Wang, W.X. Preparation and photocatalytic hydrogen evolution of g-C3N4/ZnO composite. E3S Web. Conf. 2020, 165, 05007.
- 25.
Zahra, M.; Farshad, Y.; Kourosh, H.T.; et al. Photocatalytic hydrogen evolution under visible light using MoS2/g-C3N4 nano-photocatalysts. Catal. Lett. 2023, 154, 1255–1269.
- 26.
Chen, Q.; Huang, J.; Chu, D.; et al. Inhibiting photogenerated electron-hole recombination in double metal phosphides decorated g-C3N4 nanosheets by work function gradient for improved hydrogen production. Int. J. Hydrogen Energy 2024, 90, 1023–1030.
- 27.
Bao, T.; Li, X.; Li, S.; et al. Recent advances of graphitic carbon nitride (g-C3N4) based materials for photocatalytic applications: A review. Nano. Mater. Sci. 2025, 7, 145–168.
- 28.
Bhanderi, D.; Lakhani, P.; Modi, C.K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review. RSC Sustain. 2024, 2, 265–287.
- 29.
Ma, D.D.; Zhang, Z.M.; Zhou, Y.J.; et al. The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coord. Chem. Rev. 2024, 500, 215489.
- 30.
Kamble, B.B.; Sharma, K.K.; Sonawane, K.D.; et al. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv. Colloid. Interface. Sci. 2024, 333, 103284.
- 31.
Xie, Z.B.; Wang, C.; Wu, F.Q.; et al. Loading silver nanoclusters onto g-C3N4 by formamide-assisted in-situ strategy to achieve efficient photocatalytic water splitting for hydrogen production. J Photochem. Photobiol. Chem. 2025, 462, 116275.
- 32.
Dankawu, U.; Hafeez, Y.H.; Ndikilar, E.C.; et al. Recent advances perspective of g-C3N4-based materials for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting. Int. J. Hydrogen Energy 2024, 67, 1218–1242.
- 33.
Mamba, G.; Mishra, A. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377.
- 34.
Kornel, K.; Marta, K.; Artur, K. Two-stage closed sinus lift: A new surgical technique for maxillary sinus floor augmentation. Cell Tissue Bank 2015, 16, 579–585.
- 35.
Khac, B.T.; Nguyen, T.L.; Pham, V.V. Review of g-C3N4-based photocatalysts for Amoxicillin photocatalytic degradation. J. Water Proc. Eng. 2024, 67, 106257.
- 36.
Gao, R.-H.; Ge, Q.; Jiang, N.; et al. Graphitic carbon nitride (g-C3N4)-based photocatalytic materials for hydrogen evolution. Front. Chem. 2022, 10, 1048504. https://doi.org/10.3389/fchem.2022.1048504.
- 37.
Wang, W.; Yu, J.C.; Shen, Z.; et al. g-C3N4 quantum dots: Direct synthesis, upconversion properties and photocatalytic application. Chem. Commun. 2014, 50, 10148–10150.
- 38.
Bashir, H.; Yi, X.Y.; Yuan, J.L.; et al. Highly ordered TiO2 nanotube arrays embedded with g-C3N4 nanorods for enhanced photocatalytic activity. J. Photochem. Photobiol. A Chem. 2019, 382, 111930.
- 39.
Shi, Y.X.; Li, L.L.; Sun, H.R.; et al. Engineering ultrathin oxygen-doped g-C3N4 nanosheet for boosted photoredox catalytic activity based on a facile thermal gas-shocking exfoliation effect. Sep. Purif. Technol. 2022, 292, 121038.
- 40.
Chen, X.; Shi, R.; Chen, Q.; et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 2019, 59, 644–650.
- 41.
Khan, A.M.; Mutahir, S.; Shaheen, I.; et al. Recent advances over the doped g-C3N4 in photocatalysis: A review. Coord. Chem. Rev. 2025, 522, 216227.
- 42.
Yang, S.; Vanish, K.; Ki-Hyun, K. The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Separ. Purif. Technol. 2023, 305, 122413.
- 43.
Nagar, P.O.; Chouhan, N. Non-metal doped graphitic carbon nitride (g-C3N4): Prospects review on hydrogen generation via water splitting. Int. J. Hydrogen Energy 2024, 96, 533–565.
- 44.
Yue, D.; Raj, M.N.S.; Kumar, V.J.; et al. History of metal free g-C3N4 photocatalysts for hydrogen production. Diam. Relat. Mater. 2024, 146, 111228.
- 45.
Zhan, W.; Yang, N.; Zhou, T.; et al. Boron doping induced photocatalytic active site shift in ultrathin porous g-C3N4 for significant boosting H2 production. Int. J. Hydrogen Energy 2024, 92, 907–916.
- 46.
Cao, J.; Jing, X.L.; Ma, Z.Y.; et al. One-step synthesis of C quantum dots/C doped g-C3N4 photocatalysts for visible-light-driven H2 production from water splitting. J. Phys. Appl. Phys. 2022, 55, 444008.
- 47.
Wang, W.K.; Wei, S.; Hu, Y.; et al. Fast carrier separation induced by the metal-like O-doped MoS2/CoS cocatalyst for achieving photocatalytic and photothermal hydrogen production. Chem. Eng. J. 2024, 493, 152516.
- 48.
Khursheed, A.; Mohd, Q.K.; Ali, A.; et al. Sulfur-doped graphitic-carbon nitride (S@g-C3N4) as bi-functional catalysts for hydrazine sensing and hydrogen production applications. Synth. Met. 2022, 288, 117100.
- 49.
Hussain, A.S.; Hu, J.; Liu, H.; et al Preparation of C-doped g-C3N4 by Co-polycondensation of melamine sucrose for improved photocatalytic H2 evolution. Int. J. Hydrogen Energy 2024, 87, 705–712.
- 50.
Leila, H.; Clement, M.; Valerie, C.; et al. Influence of low level of non-metal doping on g-C3N4 performance for H2 production from water under solar light irradiation. Int. J. Hydrogen Energy 2024, 51, 285–300.
- 51.
Yang, X.; Tian, Z.; Chen, Y.F.; et al. In situ synthesis of 2D ultrathin cobalt doped g-C3N4 nanosheets enhances photocatalytic performance by accelerating charge transfer. J. Alloys. Compd. 2021, 859, 157754.
- 52.
Zhang, L.S.; Ding, N.; Hashimoto, M.; et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano. Res. 2018, 11, 2295–2309.
- 53.
Gao, L.F.; Wen, T.; Xu, J.Y.; et al. Iron-doped carbon nitride-type polymers as homogeneous organocatalysts for visible light-driven hydrogen evolution. Acs. Appl. Mater. Inter. 2016, 8, 617–624.
- 54.
Song, X.F.; Tao, H.; Chen, L.X.; et al. Synthesis of Fe/g-C3N4 composites with improved visible light photocatalytic activity. Mater. Lett. 2014, 116, 265–267.
- 55.
Wan, Y.; Wang, H.; Liu, J.; et al. Removal of polyethylene terephthalate plastics waste via Co–CeO2 photocatalyst–activated peroxymonosulfate strategy. Chem. Eng. J. 2024, 479, 147781.
- 56.
Xiong, T.; Cen, W.L.; Zhang, Y.X.; et al. Bridging the g-C3N4 Interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.
- 57.
Zhou, Y.Y.; Zhang, L.; Wang, W.Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.
- 58.
Li, H.P.; Xia, Y.G.; Liang, Z.W.; et al. Energy band engineering of polymeric carbon nitride with indium doping for high enhancement in charge separation and photocatalytic performance. ACS Appl. Energy Mater. 2020, 3, 377–386.
- 59.
Hu, Y.D.; Qu, Y.T.; Zhou, Y.S.; et al. Single Pt atom-anchored C3N4: A bridging Pt-N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021, 412, 128749.
- 60.
Tian, H.Y.; Liu, X.; Liang, Z.Q.; et al. Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible near-infrared light. J. Colloid Interface Sci. 2019, 557, 700–708.
- 61.
Chen, T.; Quan, W.; Yu, L.; et al. One step synthesis visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts. J. Alloys Compd. 2016, 686, 628–634.
- 62.
Ren, W.; Wang, J.; Zheng, X.; et al. Transition metal phosphides (Fe2P, Co2P, and Ni2P) modified CdS nanorods for efficient photocatalytic H2 Evolution. ACS Appl. Nano Mater. 2024, 7, 22137–22146
- 63.
Mahzoon, S.; Haghighi, M.; Nowee, S.M. Sonoprecipitation fabrication of enhanced electron transfer Cu(OH)2/g-C3N4 nanophotocatalyst with promoted H2 Production activity under visible light irradiation. Renew. Energy 2020, 150, 91–100.
- 64.
Reza, G.M.; Dinh, C.T.; Beland, F.; et al. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187–8208.
- 65.
Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mat. 2018, 8, 1701503–1701531.
- 66.
Chen, Z.H.; Guo, F.; Sun, H.; et al. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401.
- 67.
Fan, J.; Yang, Y.; Liu, J.; et al. Constructed NiS-Mn2SnS4/g-C3N4 dual-stage type-II heterojunction with high-specific-surface-area for synergistically enhanced photocatalytic hydrogen production performance. Fuel 2026, 405, 136702.
- 68.
Xu, Z.; Shi, Y.X.; Li, L.L.; et al. Fabrication of 2D/2DZ-scheme highly crystalline carbon nitride/δ-Bi2O3 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline. J. Alloys Compd. 2022, 895, 16266.
- 69.
Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486–1503.
- 70.
Zhao, S.; Xu, J.; Mao, M.; et al. Protonated g-C3N4 cooperated with Co-MOF doped with Sm to construct 2D/2D heterojunction for integrated dye-sensitized photocatalytic H2 evolution. J. Colloid Interface Sci. 2021, 583, 435–447.
- 71.
He, J.; Zou, X.; Dong, Y.; et al. Construction of CoOx/tubular C3N4 Z-scheme heterojunction for synergistically enhanced photocatalytic hydrogen production. Renew. Energy 2026, 256, 124274.
- 72.
Xu, Q.; Zhang, L.; Cheng, B.; et al. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.
- 73.
Li, Y.; Yang, H.; Li, W.; et al. P-doped ultrathin g-C3N4/In2S3 S-scheme heterojunction enhances photocatalytic hydrogen production and degradation of ofloxacin. Phys. B 2024, 685, 416053.
- 74.
Wang, Y.; Lin, H.; Zong, J.; et al. Interface Design of S Scheme Co9S8/Flower-like g-C3N4 van der Waals Heterojunction with Enhanced Photocatalytic Hydrogen Production and Tetracycline Hydrochloride Degradation. Chin. J. Struct. Chem. 2025, 100798. https://doi.org/10.1016/j.cjsc.2025.100798.
- 75.
Jo, W.-K.; Selvam, N.C.S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem. Eng. J. 2017, 317, 913–924.
- 76.
Ou, M.; Wan, S.; Zhong, Q.; et al. Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int. J. Hydrogen Energy 2017, 42, 27043–27054.
- 77.
Sun, S.; Li, J.; Cui, J.; et al. Simultaneously engineering Kdoping exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 778–787.
- 78.
Hao, X.; Zhou, J.; Cui, Z.; et al. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl. Catal. B. Environ. 2018, 229, 41–51.
- 79.
Zhou, Y.; Zhang, L.; Huang, W.; et al. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 2016, 99, 111–117.
- 80.
Li, Y.-P.; Li, F.-T.; Wang, X.-J.; et al. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2017, 42, 28327–28336.
- 81.
Jiang, D.; Chen, L.; Xie, J.; et al. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans. 2014, 43, 4878–4885.
- 82.
Tan, Y.; Shu, Z.; Zhou, J.; et al. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl. Catal. B. Environ. 2018, 230, 260–268.
- 83.
Han, C.; Gao, Y.; Liu, S.; et al. Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity. Int. J. Hydrogen Energy 2017, 42, 22765–22775.
- 84.
Huang, Q.-Z.; Wang, J.-C.; Wang, P.-P.; et al. In-situ growth of mesoporous Nb2O5 microspheres on g-C3N4 nanosheets for enhanced photocatalytic H2 evolution under visible light irradiation. Int. J. Hydrogen Energy 2017, 42, 6683–6694.
- 85.
Zang, Y.; Li, L.; Li, X.; et al. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277–286.
- 86.
Shi, F.; Chen, L.; Xing, C.; et al. ZnS microsphere/g-C3N4 nanocomposite photo-catalyst with greatly enhanced visible light performance for hydrogen evolution: Synthesis and synergistic mechanism study. RSC Adv. 2014, 4, 62223–62229.
- 87.
Chen, F.; Yang, H.; Wang, X.; et al. Facile synthesis enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts Chin. J. Catal. 2017, 38, 296–304.
- 88.
Hong, J.; Wang, Y.; Wang, Y.; et al. Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. ChemSusChem 2013, 6, 2263–2268.
- 89.
Cheng, R.; Fan, X.; Wang, M.; et al. Facile construction of CuFe2O4/g-C3N4 photocatalyst for enhanced visible-light hydrogen evolution. RSC Adv. 2016, 6, 18990–18995.