- 1.
Amin, H.; Šantl-Temkiv, T.; Cramer, C.; Finster, K.; Real, F.G.; Gislason, T.; Holm, M.; Janson, C.; Jögi, N.O.; Jogi, R.; et al. Indoor airborne microbiome and endotoxin: Meteorological events and occupant characteristics are important determinants. Environ. Sci. Technol. 2023, 57, 11750–11766.
- 2.
Li, P.; Li, L.; Yang, K.; Zheng, T.; Liu, J.; Wang, Y. Characteristics of microbial aerosol particles dispersed downwind from rural sanitation facilities: Size distribution, source tracking and exposure risk. Environ. Res. 2021, 195, 110798.
- 3.
Chen, Y.; Liang, Z.; Li, G.; An, T. Indoor/Outdoor airborne microbiome characteristics in residential areas across four seasons and its indoor purification. Environ. Int. 2024, 190, 108857.
- 4.
Su, K.; Liang, Z.; Zhang, S.; Liao, W.; Gu, J.; Guo, Y.; Li, G.; An, T. The abundance and pathogenicity of microbes in automobile air conditioning filters across the typical cities of China and Europe. J. Hazar. Mater. 2024, 472, 134459.
- 5.
Zhang, S.; Liang, Z.; Wang, X.; Ye, Z.; Li, G.; An, T. Bioaerosols in an industrial park and the adjacent houses: Dispersal between indoor/outdoor, the impact of air purifier, and health risk reduction. Environ. Int. 2023, 172, 107778.
- 6.
Liang, Z.; Yu, Y.; Wang, X.; Liao, W.; Li, G.; An, T. The exposure risks associated with pathogens and antibiotic resistance genes in bioaerosol from municipal landfill and surrounding area. J. Environ. Sci.-China 2023, 129, 90–103.
- 7.
Yue, S.; Li, L.; Xu, W.; Zhao, J.; Ren, H.; Ji, D.; Li, P.; Zhang, Q.; Wei, L.; Xie, Q.; et al. Biological and nonbiological sources of fluorescent aerosol particles in the urban atmosphere. Environ. Sci. Tech., 2022, 56, 7588–7597.
- 8.
Geng, X.; Nie, C.; Chen, H.; Tang, X.; Wei, M.; Wang, Y.; Gao, H.; Li, D.; Fang, M.; Ju, R.; et al. Nycterohemeral airborne fungal and bacterial communities and health risks of potential pathogens in Shanghai. Environ. Sci. Atmos. 2024, 4, 190–201.
- 9.
Cariñanos, P.; Foyo-Moreno, I.; Alados, I.; Guerrero-Rascado, J.L.; Ruiz-Peñuela, S.; Titos, G.; Cazorla, A.; Alados-Arboledas, L.; de la Guardia, C.D. Bioaerosols in urban environments: Trends and interactions with pollutants and meteorological variables based on quasi-climatological series. J. Environ. Manag. 2021, 282, 111963.
- 10.
Wang, H.; Wang, H.; Lu, X.; Lu, K.; Zhang, L.; Tham, Y.J.; Shi, Z.; Aikin, K.; Fan, S.; Brown, S.S.; et al. Increased night-time oxidation over China despite widespread decrease across the globe. Nat. Geosci. 2022, 16, 217–223.
- 11.
Wang, Y.; Zhao, Y.; Liu, Y.; Jiang, Y.; Zheng, B.; Xing, J.; Liu, Y.; Wang, S.; Nielsen, C.P. Sustained emission reductions have restrained the ozone pollution over China. Nat. Geosci. 2023, 16, 967–974.
- 12.
Wang, H.; Peng, L.; Li, G.; Liu, H.; Liang, Z.; Zhao, H.; An, T. Enhanced catalytic ozonation inactivation of bioaerosols by MnO2/Ni foam with abundant oxygen vacancies and O3 at atmospheric concentration. Appl. Catal. B Environ., 2024, 344, 123675.
- 13.
Kakaei, K.; Padervand, M.; Akinay, Y.; Dawi, E.; Ashames, A.; Saleem, L.; Wang, C. A critical mini-review on challenge of gaseous O3 toward removal of viral bioaerosols from indoor air based on collision theory. Environ. Sci. Pollut. Res. 2023, 30, 84918–84932.
- 14.
Truyols-Vives, J.; Botella-Grau, S.; Mercader-Barceló; J; Baldoví, H.G. Antimicrobial activity of safe concentrations of ozone, hydrogen peroxide, and triethylene glycol in air and surfaces. Environ. Sci. Atmos. 2024, 4, 620–633.
- 15.
Liang, Z.; Yu, Y.; Ye, Z.; Li, G.; Wang, W.; An, T. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human. Environ. Inter. 2020, 143, 105934.
- 16.
Liu, Z.; Xiao, X.; Jiang, C.; Wang, Y.; He, J. Assessment of the air disinfection effect of low-concentration ozone in a closed environment. Build. Environ. 2023, 244, 110747.
- 17.
Yao, M.; Zhang, L.; Ma, J.; Zhou, L. On airborne transmission and control of SARS-CoV-2. Sci. Total. Environ. 2020, 731, 139178.
- 18.
Premjit, Y.; Sruthi, N.U.; Pandiselvam, R.; Kothakota, A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1054–1085.
- 19.
Afonso, N.F.; Pires, J.C. Characterization of surface ozone behavior at different regimes. Appl. Sci. 2017, 7, 944.
- 20.
Li, G.; Liu, X.; An, T.; Yang, H.; Zhang, S.; Zhao, H. Photocatalytic and photoelectrocatalytic degradation of small biological compounds at TiO2 photoanode: A case study of nucleotide bases. Catal. Today 2015, 242, 363–371.
- 21.
Sun, H.; Li, G.; Nie, X.; Shi, H.; Wong, P.K.; Zhao, H.; An, T. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks. Environ. Sci. Technol. 2014, 48, 9412–9419.
- 22.
Wang, H.; Peng, L.; Li, G.; Zhang, W.; Liang, Z.; Zhao, H.; An, T. Photocatalytic ozonation inactivation of bioaerosols by NiFeOOH nanosheets in situ grown on nickel foam. Appl. Catal. B Environ. 2023, 324, 122273.
- 23.
Pironti, C.; Moccia, G.; Motta, O.; Boccia, G.; Franci, G.; Santoro, E.; Capunzo, M.; De Caro, F. The influence of microclimate conditions on ozone disinfection efficacy in working places. Environ. Sci. Poll. Res. 2021, 28, 64687–64692.
- 24.
Yang, Y.; Yang, L.; Hu, X.; Shen, Z. Characteristics of bioaerosols under high-ozone periods, haze episodes, dust storms, and normal days in Xi’an, China. Particuology. 2024, 9, 140–148.
- 25.
Gong, J.; Qi, J.; Beibei, E.; Yin, Y.; Gao, D. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environ. Pollut. 2020, 257, 113485.
- 26.
Zuo, Z.; Pan, Y.; Huang, X.; Yuan, T.; Liu, C.; Cai, X.; Xu, Z. Seasonal distribution of human-to-human pathogens in airborne PM2.5 and their potential high-risk ARGs. Front. Microbiol. 2024, 15, 1422637.
- 27.
Hao, W.; Huang, Y.W.; Wang, Y. Bioaerosol size as a potential determinant of airborne E. coli viability under ultraviolet germicidal irradiation and ozone disinfection. Nanotechnology 2024, 35, 145702.
- 28.
Li, Z.; Lu, J.; Tong, Y.; Li, S.; He, F. Differences in microbial community composition and factors affecting different particulate matter during autumn in three cities of Xinjiang, China. Sci. Total. Environ. 2023, 866, 161275.
- 29.
Liu, H.; Zhang, X.; Zhang, H.; Yao, X.; Zhou, M.; Wang, J.; He, Z.; Zhang, H.; Lou, L.; Mao, W.; et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 2018, 233, 483–493.
- 30.
Góralska, K.; Lis, S.; Gawor, W.; Karuga, F.; Romaszko, K.; Brzeziańska-Lasota, E. Culturable filamentous fungi in the air of recreational areas and their relationship with bacteria and air pollutants during winter. Atmosphere 2022, 13, 207.
- 31.
Cordero, J.M.; Núñez, A.; García, A.M.; Borge, R. Assessment and statistical modelling of airborne microorganisms in Madrid. Environ. Pollut. 2021, 269, 116124.
- 32.
Wang, Y.; Qi, J.; Han, C.; Zhang, T.; Zhang, D. Microbial characteristics of culturable fungi and bacteria in aerosol particles of a coastal region. Aerobiologia 2020, 36, 507–525.
- 33.
Ai, Y.; Wang, C.; Pan, Y.L.; Videen, G. Characterization of single fungal aerosol particles in a reactive atmospheric environment using time-resolved optical trapping-raman spectroscopy (OT-RS). Environ. Sci. Atmos. 2022, 2, 591–600.
- 34.
Pan, Y.L.; Santarpia, J.L.; Ratnesar-Shumate, S.; Corson, E.; Eshbaugh, J.; Hill, S.C.; Chatt; Williamson, C.; Coleman, M.; Bare, C.; Kinahan, S. Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 538–550.
- 35.
Pan, Y.L.; Kalume, A.; Wang, C.; Santarpia, J. Atmospheric aging processes of bioaerosols under laboratory-controlled conditions: A review. J. Aerosol. Sci. 2021, 155, 105767.
- 36.
Ratnesar-Shumate, S.; Pan, Y.L.; Hill, S.C.; Kinahan, S.; Corson, E.; Eshbaugh, J.; Santarpia, J.L. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 13–28.
- 37.
D’Amato, G.; Annesi-Maesano, I.; Biagioni, B.; Lancia, A.; Cecchi, L.; D’Ovidio, M.C.; D’Amato, M. New developments in climate change, air pollution, pollen allergy, and interaction with SARS-CoV-2. Atmosphere 2023, 14, 848.
- 38.
Tiedemann, A.V.; Firsching, K.H. Interactive effect of elevated ozone and carbon dioxide on growth and yield of leaf rust infected versus non infected wheat. Environ. Pollut. 2000, 108, 357–363.
- 39.
Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total. Environ. 2020, 740, 140005.
- 40.
Bai, C.; Cai, Y.; Sun, T.; Li, G.; Wang, W.; Wong, P.K.; An, T. Mechanism of antibiotic resistance spread during sub-lethal ozonation of antibiotic-resistant bacteria with different resistance targets. Water Res. 2024, 259, 121837.
- 41.
Alexander, J.; Knopp, G.; Dötsch, A.; Wieland, A.; Schwartz, T. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Sci. Total Environ. 2016, 559, 103–112.
- 42.
Wang, Y.; Yang, Y.; Yuan, Q.; Li, T.; Zhou, Y.; Zong, L.; Wang, M.; Xie, Z.; Ho, H.C.; Gao, M.; et al. Substantially underestimated global health risks of current ozone pollution. Nat. Commun. 2025, 16, 102.
- 43.
Zong, L.; Yang, Y.; Xia, H.; Gao, M.; Sun, Z.; Zheng, Z.; Li, X.; Ning, G.; Li, Y.; Lolli, S. Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: Role of synoptic weather pattern and urbanization. Atmos. Chem. Phys. 2022, 22, 6523–6538.
- 44.
Carvalho, R.B.; Marmett, B.; Dorneles, G.P.; da Silva, I.M.; Romão, P.R.T.; da Silva Júnior, F.M.R.; Rhoden, C.R. O3 concentration and duration of exposure are factors influencing the environmental health risk of exercising in Rio Grande, Brazil. Environ. Geochem. Health 2022, 44, 2733–2742.