- 1.
Achakulwisut, P.; Erickson, P.; Guivarch, C.; Schaeffer, R.; Brutschin, E.; Pye, S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 2023, 14, 5424.
- 2.
Liao, Y.; Koelewijn, S.-F.; Van den Bossche, G.; Aelst, J.V.; Van den Bosch, S.; Renders, T.; Navare, K.; Nicolaï, T.; Aelst, K.V.; Maesen, M.; et al. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 2020, 367, 1385–1390.
- 3.
Wang, T.; Zhou, T.; Li, C.; Song, Q.; Zhang, M.; Yang, H. Development status and prospects of biomass energy in China. Energies 2024, 17, 4484.
- 4.
Zhao, H.; Liu, J.; Zhong, N.; Larter, S.; Li, Y.; Kibria, M.G.; Su, B.L.; Chen, Z.; Hu, J. Biomass photoreforming for hydrogen and value‐added chemicals co‐production on hierarchically porous photocatalysts. Adv. Energy Mater. 2023, 13, 2300257.
- 5.
Ghalta, R.; Chauhan, A.; Srivastava, R. Heterogeneous photocatalytic valorization of lignocellulose biomass for chemical and fuel production via reductive pathways. Sustain. Energy Fuels 2024, 8, 3205–3246.
- 6.
Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 2020, 49, 6198–6223.
- 7.
Zavrel, M.; Bross, D.; Funke, M.; Büchs, J.; Spiess, A.C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol. 2009, 100, 2580–2587.
- 8.
Zhao, H.; Li, C.-F.; Yu, X.; Zhong, N.; Hu, Z.-Y.; Li, Y.; Larter, S.; Kibria, M.; Hu, J. Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Appl. Catal. B 2022, 302, 120872.
- 9.
Song, W.; Liu, H.; Zhang, J.; Sun, Y.; Peng, L. Understanding Hβ zeolite in 1,4-dioxane efficiently converts hemicellulose-related sugars to furfural. ACS Catal. 2022, 12, 12833–12844.
- 10.
Kumar, A.; Ghalta, R.; Bal, R.; Srivastava, R. Photocatalytic β-O-4 bond cleavage in lignin models and native lignin through CdS integration on titanium oxide photocatalyst under visible light irradiation. Appl. Catal. B. 2024, 359, 124494.
- 11.
Lancefield, C.S.; Westwood, N.J. The synthesis and analysis of advanced lignin model polymers. Green Chem. 2015, 17, 4980–4990.
- 12.
Pattnaik, F.; Tripathi, S.; Patra, B.; Nanda, S.; Kumar, V.; Dalai, A.; Naik, S. Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: A review. Environ. Chem. Lett. 2021, 19, 4119–4136.
- 13.
Kuehnel, M.; Reisner, E. Solar Hydrogen Generation from Lignocellulose. Angew. Chem. Int. Ed. 2018, 57, 3290–3296.
- 14.
Sun, L.; Luo, N. Catalyst design and structure control for photocatalytic refineries of cellulosic biomass to fuels and chemicals. J. Energy Chem. 2024, 94, 102–127.
- 15.
Qiu, J.; Li, M.; Ding, M.; Yao, J. Cellulose tailored semiconductors for advanced photocatalysis. Renew. Sustain. Energy Rev. 2022, 154, 111820.
- 16.
Chan, Y.H.; Loh, S.K.; Chin, B.L.F.; Yiin, C.L.; How, B.S.; Cheah, K.W.; Wong, M.K.; Loy, A.C.M.; Gwee, Y.L.; Lo, S.L.Y.; et al. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects. Chem. Eng. J. 2020, 397, 125406.
- 17.
Lopez, G.; Santamaria, L.; Lemonidou, A.; Zhang, S.; Wu, C.; Sipra, A.T.; Gao, N. Hydrogen generation from biomass by pyrolysis. Nat. Rev. Method. Prim. 2022, 2, 21.
- 18.
Stevens, J.C.; Das, L.; Mobley, J.K.; Asare, S.O.; Lynn, B.C.; Rodgers, D.W.; Shi, J. Understanding laccase–ionic liquid iInteractions toward biocatalytic lignin conversion in aqueous ionic liquids. ACS Sustain. Chem. Eng. 2019, 7, 15928– 15938.
- 19.
Qin, Y.-Z.; Zong, M.-H.; Lou, W.-Y.; Li, N. Biocatalytic upgrading of 5-hydroxymethylfurfural (HMF) with levulinic acid to HMF Levulinate in biomass-derived solvents. ACS Sustain. Chem. Eng. 2016, 4, 4050–4054.
- 20.
Lee, D.; Nam, H.; Won Seo, M.; Hoon Lee, S.; Tokmurzin, D.; Wang, S.; Park, Y.-K. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chem. Eng. J. 2022, 447, 137501.
- 21.
Wang, H.; Liu, S.; Wang, H.; Chao, J.; Li, T.; Ellis, N.; Duo, W.; Bi, X.; Smith, K.J. Thermochemical conversion of biomass to fuels and chemicals: A review of catalysts, catalyst stability, and reaction mechanisms. Catal. Rev. 2023, 67, 57–129.
- 22.
Duan, H.; Wang, F. Opportunities for electrocatalytic biomass valorization. Chem. Catal. 2022, 2, 641–643.
- 23.
Lu, Y.; Yang, L.; Jiang, Y.; Yuan, Z.; Wang, S.; Zou, Y. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion. Chin. J. Catal. 2023, 53, 153–160.
- 24.
Aboagye, D.; Djellabi, R.; Medina, F.; Contreras, S. Radical‐mediated photocatalysis for lignocellulosic biomass conversion into value‐added chemicals and hydrogen: Facts, opportunities and challenges. Angew. Chem. Int. Ed. 2023, 62, e202301909.
- 25.
Huang, Z.; Luo, N.; Zhang, C.; Wang, F. Radical generation and fate control for photocatalytic biomass conversion. Nat. Rev. Chem. 2022, 6, 197–214.
- 26.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
- 27.
Wu, Y.; Wang, H.; Li, H.; Han, X.; Zhang, M.; Sun, Y.; Fan, X.; Tu, R.; Zeng, Y.; Xu, C.C.; et al. Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. Renew. Energy 2022, 196, 462–481.
- 28.
Tawalbeh, M.; Al-Othman, A.; Salamah, T.; Alkasrawi, M.; Martis, R.; El-Rub, Z.A. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. J. Environ. Manag. 2021, 299, 113597.
- 29.
Chen, H.; Wan, K.; Zheng, F.; Zhang, Z.; Zhang, Y.; Long, D. Mechanism insight into photocatalytic conversion of lignin for valuable chemicals and fuels production: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 147, 111217.
- 30.
You, Y.; Chen, S.; Zhao, J.; Lin, J.; Wen, D.; Sha, P.; Li, L.; Bu, D.; Huang, S. Rational design of S‐scheme heterojunction toward efficient photocatalytic cellulose reforming for H2 and formic acid in pure water. Adv. Mater. 2023, 36, 2307962.
- 31.
Wang, M.; Zhou, H.; Wang, F. Photocatalytic production of syngas from biomass. Acc. Chem. Res. 2023, 56, 1057–1069.
- 32.
Buzzetti, L.; Crisenza, G.; Melchiorre, P. Mechanistic Studies in Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 3730– 3747.
- 33.
Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B 2020, 262, 118281.
- 34.
Li, J.; Zhang, Z.; Cui, W.; Wang, H.; Cen, W.; Johnson, G.; Jiang, G.; Zhang, S.; Fong, F. The Spatially Oriented Charge Flow and Photocatalysis Mechanism on Internal van der Waals Heterostructures Enhanced g-C3N4. ACS Catal. 2018, 8, 8376–8385.
- 35.
Cui, W.; Chen, L.; Sheng, J.; Li, J.; Wang, H.; Dong, X.; Zhou, Y.; Sun, Y.; Dong, F. The pivotal roles of spatially separated charge localization centers on themolecules activation and photocatalysis mechanism. Appl. Catal. B 2020, 262, 118251.
- 36.
Tang, J.; Zhu, J.; Liu, L.; Xia, L.; He, Z.; Wang, D.; Xu, X.; Song, S. Coupling urchin-like TiO2 nanospheres with nitrogen and sulfur co-doped graphene quantum dots for visible-light-induced degradation of toluene. Chem. Eng. J. 2024, 482, 148813.
- 37.
Li, Z.; Wang, S.; Wu, J.; Zhou, W. Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renew. Sustain. Energy Rev. 2022, 156, 111980.
- 38.
Wu, C.; Huang, W.; Liu, H.; Lv, K.; Li, Q. Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Appl. Catal. B 2023, 330, 122653.
- 39.
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80.
- 40.
Yue, J.; Yang, H.; Liu, C.; Wang, S.; Kang, X. In-plane electron transfer dominated carbon nitride for high-efficiency quasi-homogeneous photochemical synthesis of hydrogen peroxide. Chem. Eng. J. 2024, 497, 154683.
- 41.
Abdellatif, H.; Zhang, G.; Wang, X.; Xie, D.; Irvine, J.; Ni, J.; Ni, C. Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units. Chem. Eng. J. 2019, 370, 874– 884.
- 42.
Xu, C.; Liu, H.; Wang, D.; Li, D.; Zhang, Y.; Liu, X.; Huang, J.; Wu, S.; Fan, D.; Liu, H.; et al. Molten-salt assisted synthesis of polymeric carbon nitride-based photocatalyst for enhanced photocatalytic activity under green light irradiation. Appl. Catal. B 2023, 334, 122835.
- 43.
Yang, H.; Zhou, Y.; Wang, Y.; Hu, S.; Wang, B.; Liao, Q.; Li, H.; Bao, J.; Ge, G.; Jia, S. Three-dimensional flower-like phosphorus-doped g-C3N4 with a high surface area for visible-light photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 16485–16494.
- 44.
Aggarwal, M.; Basu, S.; Shetti, N.P.; Nadagouda, M.N.; Kwon, E.E.; Park, Y.-K.; Aminabhavi, T.M. Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4). Chem. Eng. J. 2021, 425, 131402.
- 45.
Chen, M.; Sun, M.; Cao, X.; Wang, H.; Xia, L.; Jiang, W.; Huang, M.; He, L.; Zhao, X.; Zhou, Y. Progress in preparation, identification and photocatalytic application of defective g-C3N4. Coord. Chem. Rev. 2024, 51, 215849.
- 46.
Huang, Q.-S.; Li, Q.; Chu, C.; Liu, Q.; Li, Z.; Mao, S. Synergetic regulation of electronic structure of graphitic carbon nitride through phosphorus and carbon co-doping for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 2024, 428, 149155.
- 47.
You, Q.; Zhang, C.; Cao, M.; Wang, B.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production. Appl. Catal. B 2023, 321, 121941.
- 48.
Guo, L.; Gao, J.; Huang, Q.; Wang, X.; Li, Z.; Li, M.; Zhou, W. Element engineering in graphitic carbon nitride photocatalysts. Renew. Sust. Energ. Rev. 2024, 199, 114482.
- 49.
Zhao, D.; Guan, X.; Shen, S. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: A review. Environ. Chem. Lett. 2022, 20, 3505–3523.
- 50.
Luo, M.; Jiang, G.; Yu, M.; Yan, Y.; Qin, Z.; Li, Y.; Zhang, Q. Constructing crystalline homophase carbon nitride Sscheme heterojunctions for efficient photocatalytic hydrogen evolution. J. Mater. Sci. Technol. 2023, 161, 220–232.
- 51.
Akinaga, Y.; Kawawaki, T.; Kameko, H.; Yamazaki, Y.; Yamazaki, K.; Nakayasu, Y.; Kato, K.; Tanaka, Y.; Hanindriyo, A.T.; Takagi, M.; et al. Metal single‐atom cocatalyst on carbon nitride for the photocatalytic hydrogen evolution reaction: Effects of metal species. Adv. Funct. Mater. 2023, 33, 2303321.
- 52.
Li, K.; Lin, Y.-Z.; Wang, K.; Wang, Y.; Zhang, Y.; Zhang, Y.; Liu, F.-T. Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride. Appl. Catal. B 2020, 268, 118402.
- 53.
Liu, Y.; He, M.; Guo, R.; Fang, Z.; Kang, S.; Ma, Z.; Dong, M.; Wang, W.; Cui, L. Ultrastable metal-free near-infrareddriven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6. Appl. Catal. B 2020, 260, 118137.
- 54.
Zhang, X.; Yu, L.; Zhuang, C.; Peng, T.; Li, R.; Li, X. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal. 2013, 4, 162– 170.
- 55.
Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.
- 56.
Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123.
- 57.
Ding, L.-L.; Ge, J.-P.; Zhou, W.-Q.; Gao, J.-P.; Zhang, Z.-Y.; Xiong, Y. Nanogold-functionalized g-C3N4 nanohybrids for sensitive impedimetric immunoassay of prostate-specific antigen using enzymatic biocatalytic precipitation. Biosens. Bioelectron. 2016, 85, 212–219.
- 58.
Liu, R.; Lin, J.; Zhu, L.; Zhang, X.; Li, Y.; Pan, H.; Kong, L.; Zhu, S.; Wang, J. Synergistic effect of donor-acceptor structure and built-in electric field in hollow-spherical carbon nitride homojunction towards effective charge transfer and excellent photocatalytic hydrogen evolution performance. Chem. Eng. J. 2024, 484, 149507.
- 59.
Tang, C.; Cheng, M.; Lai, C.; Li, L.; Yang, X.; Du, L.; Zhang, G.; Wang, G.; Yang, L. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis. Coord. Chem. Rev. 2023, 474, 214846.
- 60.
Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B 2017, 217, 388–406.
- 61.
Ma, J.; Li, X.; Li, Y.; Jiao, G.; Su, H.; Xiao, D.; Zhai, S.; Sun, R. Single-atom zinc catalyst for co-production of hydrogen and fine chemicals in soluble biomass solution. Adv. Powder Mater. 2022, 1, 100058.
- 62.
Wang, E.; Mahmood, A.; Chen, S.-G.; Sun, W.; Muhmood, T.; Yang, X.; Chen, Z. Solar-driven photocatalytic reforming of lignocellulose into H2 and value-added biochemicals. ACS Catal. 2022, 12, 11206–11215.
- 63.
Huang, Z.; Sun, P.; Liu, H.; Ren, C.; Lin, X.; Shen, M.; Li, Z.; Xu, X. Efficient selective cleavage of C−C bonds in lignin under visible light enabled by the Fe-doped mesoporous graphitic carbon nitride photocatalyst. Ind. Crop. Prod. 2024, 222, 119642.
- 64.
Wang, J.; Zhao, Q.; Kumar, P.; Zhao, H.; Jing, L.; Di Tommaso, D.; Crespo-Otero, R.; Kibria, M.G.; Hu, J. Solar-driven cellulose photorefining into arabinose over xxygen-doped carbon nitride. ACS Catal. 2024, 14, 3376–3386.
- 65.
Liu, K.; Ma, J.; Yang, X.; Liu, Z.; Li, X.; Zhang, J.; Cui, R.; Sun, R. Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chem. Eng. J. 2022, 437, 135232.
- 66.
LeBlanc, G.; Chen, G.; Gizzie, E.A.; Jennings, G.K.; Cliffel, D.E. Enhanced photocurrents of photosystem I films on pdoped silicon. Adv. Mater. 2012, 24, 5959–5962.
- 67.
Yang, X.; Ma, J.; Sun, S.; Liu, Z.; Sun, R. K/O co-doping and introduction of cyano groups in polymeric carbon nitride towards efficient simultaneous solar photocatalytic water splitting and biorefineries. Green Chem. 2022, 24, 2104–2113.
- 68.
Gao, H.; Yan, S.; Wang, J.; Huang, Y.A.; Wang, P.; Li, Z.; Zou, Z. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 18077.
- 69.
Tahir, M.; Sherryna, A.; Khan, A.A.; Madi, M.; Zerga, A.Y.; Tahir, B. Defect engineering in graphitic carbon nitride nanotextures for energy efficient solar fuels production: A review. Energy Fuels 2022, 36, 8948–8977.
- 70.
Maarisetty, D.; Baral, S.S. Defect engineering in photocatalysis: Formation, chemistry, optoelectronics, and interface studies. J. Mater. Chem. A 2020, 8, 18560–18604.
- 71.
Zou, R.; Chen, Z.; Zhong, L.; Yang, W.; Li, T.; Gan, J.; Yang, Y.; Chen, Z.; Lai, H.; Li, X.; et al. Nanocellulose‐assisted molecularly engineering of nitrogen deficient graphitic carbon nitride for selective biomass photo‐xxidation. Adv. Funct. Mater. 2023, 33, 2301311.
- 72.
Zhao, C.; Shi, C.; Li, Q.; Wang, X.; Zeng, G.; Ye, S.; Jiang, B.; Liu, J. Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Mater. Today Energy 2022, 24, 100926.
- 73.
Bai, X.; Hou, Q.; Qian, H.; Nie, Y.; Xia, T.; Lai, R.; Yu, G.; Laiq Ur Rehman, M.; Xie, H.; Ju, M. Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Appl. Catal. B 2022, 303, 120895.
- 74.
Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T. Alkaliassisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible‐lightdriven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.
- 75.
Chen, C.-C.; Tsai, D.-L.; Liu, H.-T.; Wu, J.-J. Carbon Vacancy-Modified Carbon Nitride Allotropic Composite for Solar Hydrogen Generation Coupled with Selective Oxidation of 5-Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2023, 11, 6435–6444.
- 76.
Du, X.; Zhang, H.; Yao, T.; Dong, S.; Jing, L.; Hu, J. Cyano and defective co-modified carbon nitride for optimized photoreformation of glucose to arabinose. Surf. Interfaces 2024, 48, 104283.
- 77.
Cao, M.; Shao, S.; Wei, W.; Love, J.; Yue, Z.; Zhang, Y.; Zhang, X.; Xue, Y.; Yu, J.; Fan, X. Engineering multiple defect sites on ultrathin graphitic carbon nitride for efficiently photocatalytic conversion of lignin into monomeric aromatics via selective C–C bond scission. Appl. Surf. Sci. 2024, 643, 158653.
- 78.
Mitchell, E.; Law, A.; Godin, R. Interfacial charge transfer in carbon nitride heterojunctions monitored by optical methods. J. Photochem. Photobiol. C Photochem. Rev. 2021, 49, 100453.
- 79.
Deng, A.; Sun, Y.; Gao, Z.; Yang, S.; Liu, Y.; He, H.; Zhang, J.; Liu, S.; Sun, H.; Wang, S. Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano Energy 2023, 108, 108228.
- 80.
Uekert, T.; Kasap, H.; Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 2019, 141, 15201–15210.
- 81.
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.
- 82.
Ling, W.; Ma, J.; Hong, M.; Sun, R. Enhance photocatalytic CO2 reduction and biomass selective oxidation via sulfur vacancy-enriched S-scheme heterojunction of MoS2@GCN. Chem. Eng. J. 2024, 493, 152729.
- 83.
Wu, G.; Wu, Z.; Liu, L.; Cui, W.; Du, D.; Xue, Y. NIR light responsive MoS2 nanomaterials for rapid sterilization: Optimum photothermal effect via sulfur vacancy modulation. Chem. Eng. J. 2022, 427, 132007.
- 84.
Xu, X.; Dai, S.; Xu, S.; Zhu, Q.; Li, Y. Efficient photocatalytic cleavage of lignin models by a soluble perylene diimide/carbon nitride S‐scheme heterojunction. Angew. Chem. Int. Ed. 2023, 62, e202309066.
- 85.
Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Floatable S‐scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chin. J. Catal. 2023, 52, 239–251.
- 86.
Zhang, J.; Yu, J.; Yang, C.; Li, S. Recent progress on S-scheme heterojunction strategy enabling polymer carbon nitrides C3N4 and C3N5 enhanced photocatalysis in energy conversion and environmental remediation. Curr. Opin. Chem. Eng. 2024, 45, 101040.
- 87.
Ding, Y.; Cao, Y.; Chen, D.; Li, J.; Wu, H.; Meng, Y.; Huang, J.; Yuan, J.; Su, Y.; Wang, J.; et al. Relay photo/thermal catalysis enables efficient cascade upgrading of sugars to lactic acid: Mechanism study and life cycle assessment. Chem. Eng. J. 2023, 452, 139687.
- 88.
Chen, Y.; Qu, Y.; Xu, P.; Zhou, X.; Sun, J. Insight into the influence of donor-acceptor system on graphitic carbon nitride nanosheets for transport of photoinduced charge carriers and photocatalytic H2 generation. J. Colloid Interface Sci. 2021, 601, 326–337.
- 89.
Qian, Y.; Han, Y.; Zhang, X.; Yang, G.; Zhang, G.; Jiang, H.-L. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun. 2023, 14, 3083.
- 90.
Lan, Z.A.; Zhang, G.; Chen, X.; Zhang, Y.; Zhang, K.A.I.; Wang, X. Reducing the exciton binding energy of donor– acceptor‐based conjugated polymers to oromote charge‐induced reactions. Angew. Chem. Int. Ed. 2019, 58, 10236–10240.
- 91.
Ou, H.; Chen, X.; Lin, L.; Fang, Y.; Wang, X. Biomimetic donor–acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation. Angew. Chem. Int. Ed. 2018, 57, 8729–8733.
- 92.
Liu, J.; Zou, R.; Zhang, H.; Song, Y.; Liu, Y.; Yang, S.; Xia, R.; Iwuoha, E.I.; Feleni, U.; Admassie, S.; Peng, X. Enhanced π-electron transport in graphitic carbon nitride (g-C3N4) by constructing biochar-welded donor-acceptor (D-A) configuration for photocatalytic conversion of biomass. Appl. Catal. B 2024, 357, 124312.
- 93.
Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 quantum dots for lighting and displays: Roomtemperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
- 94.
Ling, W.; Ma, J.; Liu, Z.; Cui, R.; Zhang, J.; Li, X.; Hong, M.; Sun, R. Enhancing biomass oxidation with carbon nitride nanosheets ring inserted on CI Pigment Yellow 53 photocatalysts for simultaneous CO and lactic acid production. Chem. Eng. J. 2023, 475, 146117.
- 95.
Jiang, Z.; Wang, B.; Yu, J.C.; Wang, J.; An, T.; Zhao, H.; Li, H.; Yuan, S.; Wong, P.K. AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production. Nano Energy 2018, 46, 234–240.
- 96.
Hu, A.; Ye, J.; Ren, G.; Qi, Y.; Chen, Y.; Zhou, S. Metal‐free semiconductor‐based bio‐nano hybrids for sustainable CO2to‐CH4Conversion with high quantum yield. Angew. Chem. Int. Ed. 2022, 61, e202206508.
- 97.
Sakimoto, K.K.; Wong, A.B.; Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.
- 98.
Ye, J.; Chen, Y.; Gao, C.; Wang, C.; Hu, A.; Dong, G.; Chen, Z.; Zhou, S.; Xiong, Y. Sustainable conversion of microplastics to methane with ultrahigh selectivity by a biotic–abiotic hybrid photocatalytic system. Angew. Chem. Int. Ed. 2022, 61, e202213244.
- 99.
Hou, M.; Wang, R.; Wu, X.; Zhang, Y.; Ge, J.; Liu, Z. Synthesis of lutein esters by using a reusable lipase-Pluronic conjugate as the catalyst. Catal. Lett. 2015, 145, 1825–1829.
- 100.
Xu, M.; Tremblay, P.-L.; Jiang, L.; Zhang, T. Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride. Green Chem. 2019, 21, 2392–2400.
- 101.
Wang, J.; Xu, M.; Tremblay, P.-L.; Zhang, T. Improved polyhydroxybutyrate production by Cupriavidus necator and the photocatalyst graphitic carbon nitride from fructose under low light intensity. Int. J. Biol. Macromol. 2022, 203, 526– 534.
- 102.
Nasir, M.S.; Yang, G.; Ayub, I.; Wang, S.; Wang, L.; Wang, X.; Yan, W.; Peng, S.; Ramakarishna, S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl. Catal. B 2019, 257, 117855.
- 103.
Chen, F.; Wu, C.; Zheng, G.; Qu, L.; Han, Q. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects. Chin. J. Catal. 2022, 43, 1216–1229.
- 104.
Ma, J.; Liu, K.; Yang, X.; Jin, D.; Li, Y.; Jiao, G.; Zhou, J.; Sun, R. Recent advances and challenges in photoreforming of biomass‐derived feedstocks into hydrogen, biofuels, or chemicals by using functional carbon nitride photocatalysts. ChemSusChem 2021, 14, 4903–4922.
- 105.
Qiang, G.; Ansari, M.; Sun, Z.; Elangovan, S. Bioactive Molecules from Lignocellulose‐Derived Platform Chemicals. Adv. Synth. Catal. 2024, 366, 4805–4834.
- 106.
Tiwari, M.S.; Wagh, D.; Dicks, J.S.; Keogh, J.; Ansaldi, M.; Ranade, V.V.; Manyar, H.G. Solvent free upgrading of 5hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate using tin exchanged tungstophosphoric acid supported on K-10 catalyst. ACS Org. Inorg. Au 2022, 3, 27–34.
- 107.
Lucarelli, C.; Vaccari, A. Examples of heterogeneous catalytic processes for fine chemistry. Green Chem. 2011, 13, 1941– 1949.
- 108.
Blaser, H.-U.; Studer, M. The role of catalysis for the clean production of fine chemicals. Appl. Catal. A 1999, 189, 191– 204.