- 1.
World Health Organization. WHO Human Health Risk Assessment Toolkit: Chemical Hazards; World Health Organization: Geneva, Switzerland, 2010.
- 2.
Weyde, K.V.F.; Olsen, A.K.; Duale, N.; et al. Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. Sci. Total Environ. 2021, 787, 147621.
- 3.
Liu, D.; Shi, Q.; Liu, C.; et al. Effects of Endocrine-Disrupting Heavy Metals on Human Health. Toxics 2023, 11, 322.
- 4.
Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; et al. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. Environ. Pollut. 2022, 302, 119061.
- 5.
Ashrap, P.; Watkins, D.J.; Mukherjee, B.; et al. Predictors of urinary and blood Metal(loid) concentrations among pregnant women in Northern Puerto Rico. Environ. Res. 2020, 183, 109178.
- 6.
Punshon, T.; Li, Z.; Marsit, C.J.; et al. Placental Metal Concentrations in Relation to Maternal and Infant Toenails in a U.S. Cohort. Environ. Sci. Technol. 2016, 50, 1587–1594.
- 7.
Onat, T.; Demir Caltekin, M.; Turksoy, V.A.; et al. The Relationship Between Heavy Metal Exposure, Trace Element Level, and Monocyte to HDL Cholesterol Ratio with Gestational Diabetes Mellitus. Biol. Trace Elem. Res. 2020, 199, 1306–1315.
- 8.
Duan, W.; Xu, C.; Liu, Q.; et al. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: A population-based cohort study. Environ. Pollut. 2020, 263, 114630.
- 9.
Bank-Nielsen, P.; Long, M.; Bonefeld-Jørgensen, E. Pregnant Inuit Women’s Exposure to Metals and Association with Fetal Growth Outcomes: ACCEPT 2010–2015. Int. J. Environ. Res. Public Health 2019, 16, 1171.
- 10.
Fagher, U.; Laudanski, T.; Schütz, A.; et al. The relationship between cadmium and lead burdens and preterm labor. Int. J. Gynecol. Obstet. 1993, 40, 109–114.
- 11.
Centers for Disease Control and Prevention. Guidelines for the Identification and Management of Lead Exposure in Pregnant and Lactating Women; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010. Available online: https://stacks.cdc.gov/view/cdc/147837/cdc_147837_DS1.pdf (accessed on 12 January 2021).
- 12.
Nordberg, G.; Sandström, B.; Becking, G.; et al. Essentiality and toxicity of trace elements: Principles and methods for assessment of risk from human exposure to essential trace elements. J. Trace Elem. Exp. Med. Off. Publ. Int. Soc. Trace Elem. Res. Hum. 2001, 14, 261–273.
- 13.
Gernand, A.D.; Schulze, K.J.; Stewart, C.P.; et al. Micronutrient deficiencies in pregnancy worldwide: Health effects and prevention. Nat. Rev. Endocrinol. 2016, 12, 274–289.
- 14.
Shah, D.; Sachdev, H.P.S. Effect of gestational zinc deficiency on pregnancy outcomes: Summary of observation studies and zinc supplementation trials. Br. J. Nutr. 2007, 85, S101–S108.
- 15.
Abu-Saad, K.; Fraser, D. Maternal Nutrition and Birth Outcomes. Epidemiol. Rev. 2010, 32, 5–25.
- 16.
Lin, C.-M.; Doyle, P.; Wang, D.; et al. The role of essential metals in the placental transfer of lead from mother to child. Reprod. Toxicol. 2010, 29, 443–446.
- 17.
Cheong, J.N.; Wlodek, M.E.; Moritz, K.M.; et al. Programming of maternal and offspring disease: Impact of growth restriction, fetal sex and transmission across generations. J. Physiol. 2016, 594, 4727–4740.
- 18.
Abbassi-Ghanavati, M.; Greer, L.G.; Cunningham, F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstet. Gynecol. 2009, 114, 1326–1331.
- 19.
Wang, C.; Yu, A.; An, Y. Investigation and analysis of trace element detection in 1000 pregnant women in Guiyang. Res. Trace Elem. Health 2013, 30, 16–17. (In Chinese)
- 20.
Liu, S.; Xie, K.; Jiang, H.; et al. Study on the relationship between serum trace elements in pregnant women and intrauterine growth retardation of fetus. J. Yan’an Univ. 2009, 7, 83–84. (In Chinese)
- 21.
Xu, R.; Meng, X.; Pang, Y.; et al. Associations of maternal exposure to 41 metals/metalloids during early pregnancy with the risk of spontaneous preterm birth: Does oxidative stress or DNA methylation play a crucial role? Environ. Int. 2022, 158, 106966.
- 22.
Tian, T.; Yin, S.; Jin, L.; et al. Single and mixed effects of metallic elements in maternal serum during pregnancy on risk for fetal neural tube defects: A Bayesian kernel regression approach. Environ. Pollut. 2021, 285, 117203.
- 23.
Xu, C.; Xu, J.; Zhang, X.; et al. Serum nickel is associated with craniosynostosis risk: Evidence from humans and mice. Environ. Int. 2021, 146, 106289.
- 24.
Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51.
- 25.
Restrepo, B.I.; Camerlin, A.J.; Rahbar, M.H.; et al. Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bull. World Health Organ. 2011, 89, 352–359.
- 26.
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; et al. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129.
- 27.
Ying, Y.; Yu, C.; Yu, S.; et al. Trace element abundance analysis in serum of pregnant women. Shanghai J. Prev. Med. 2006, 12, 605–606. (In Chinese)
- 28.
Wastney, M.E.; Aamodt, R.L.; Rumble, W.F.; et al. Kinetic analysis of zinc metabolism and its regulation in normal humans. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1986, 251, R398–R408.
- 29.
Jia, X.; Wei, J.; Du, H.. Effects of trace element levels in pregnant women on retinopathy of prematurity. J. Clin. Exp. Med. 2015, 14, 67–69. (In Chinese)
- 30.
Zhou, Z.; Chen, G.; Li, P.; et al. Prospective association of metal levels with gestational diabetes mellitus and glucose: A retrospective cohort study from South China. Ecotoxicol. Environ. Saf. 2021, 210, 111854.
- 31.
Ma, J.; Zhang, H.; Zheng, T.; et al. Exposure to metal mixtures and hypertensive disorders of pregnancy: A nested case-control study in China. Environ. Pollut. 2022, 306, 119439.
- 32.
Liang, C.M.; Wu, X.Y.; Huang, K.; et al. Trace element profiles in pregnant women’s sera and umbilical cord sera and influencing factors: Repeated measurements. Chemosphere 2019, 218, 869–878.
- 33.
Zhao, L.; Xu, H.; Yan, C.; et al. Study on the relationship between heavy metal elements such as lead and mercury and the occurrence of nervous system malformations. Chin. J. Eugen. Genet. 2008, 5, 94–96+107. (In Chinese)
- 34.
Forsyth, J.E.; Weaver, K.L.; Maher, K.; et al. Sources of Blood Lead Exposure in Rural Bangladesh. Environ. Sci. Technol. 2019, 53, 11429–11436.
- 35.
Luo, X.; Ding, J.; Xu, B.; et al. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci. Total Environ. 2012, 424, 88–96.
- 36.
Bradham, K.D.; Nelson, C.M.; Kelly, J.; et al. Relationship Between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils. Environ. Sci. Technol. 2017, 51, 10005–10011.
- 37.
Datko-Williams, L.; Wilkie, A.; Richmond-Bryant, J. Analysis of U.S. soil lead (Pb) studies from 1970 to 2012. Sci. Total Environ. 2014, 468–469, 854–863.
- 38.
Liang, M. Analysis of blood magnesium concentration in patients with gestational diabetes mellitus. Chin. J. Eugen. Genet. 2010, 18, 69–83. (In Chinese)
- 39.
Villar, J.; Belizán, J.M. Same nutrient, different hypotheses: Disparities in trials of calcium supplementation during pregnancy. Am. J. Clin. Nutr. 2000, 71, 1375S–1379S.
- 40.
Loguercio, C.; De Girolamo, V.; Federico, A.A.; et al. Trace Elements and Chronic Liver Diseases. J. Trace Elem. Med. Biol. 1997, 11, 158–161.
- 41.
Zhao, M.; Ge, X.; Xu, J.; et al. Association between urine metals and liver function biomarkers in Northeast China: A cross-sectional study. Ecotoxicol. Environ. Saf. 2022, 231, 113163.
- 42.
Nangliya, V.; Sharma, A.; Yadav, D.; et al. Study of Trace Elements in Liver Cirrhosis Patients and Their Role in Prognosis of Disease. Biol. Trace Elem. Res. 2015, 165, 35–40.
- 43.
Kaviani, S.; Izadyar, M.; Khavani, M.; et al. A combined molecular dynamics and quantum mechanics study on the interaction of Fe3+ and human serum albumin relevant to iron overload disease. J. Mol. Liq. 2020, 317, 113933.
- 44.
Payne, R.B.; Little, A.J.; Williams, R.B.; et al. Interpretation of serum calcium in patients with abnormal serum proteins. Br. Med. J. 1973, 4, 643–646.
- 45.
Wang, L.; Cao, C. Determination of serum calcium and albumin in pregnant women with pregnancy-induced hypertension and the study of their correlation. Contemp. Med. 2011, 17, 71–72.
- 46.
Amirtharaj, G.J.; Natarajan, S.K.; Mukhopadhya, A.; et al. Fatty acids influence binding of cobalt to serum albumin in patients with fatty liver. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2008, 1782, 349–354.
- 47.
Li, A.; Zhou, Q.; Mei, Y.; et al. The effect of urinary essential and non-essential elements on serum albumin: Evidence from a community-based study of the elderly in Beijing. Front. Nutr. 2022, 9, 946245.
- 48.
Tsai, H.J.; Wu, P.Y.; Huang, J.C.; et al. Environmental Pollution and Chronic Kidney Disease. Int. J. Med. Sci. 2021, 18, 1121–1129.
- 49.
Navarro-Alarcon, M.; Reyes-Pérez, A.; Lopez-Garcia, H.; et al. Longitudinal study of serum zinc and copper levels in hemodialysis patients and their relation to biochemical markers. Biol. Trace Elem. Res. 2006, 113, 209–222.
- 50.
Prasad, A.S.; Bao, B.; Beck, F.W.J.; et al. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 2004, 37, 1182–1190.
- 51.
Feig, D.I. Uric acid: A novel mediator and marker of risk in chronic kidney disease? Curr. Opin. Nephrol. Hypertens. 2009, 18, 526–530.
- 52.
Liu, T.; Zhang, M.; Rahman, M.L.; et al. Exposure to heavy metals and trace minerals in first trimester and maternal blood pressure change over gestation. Environ. Int. 2021, 153, 106508
- 53.
Itoh, K.; Kawasaki, T.; Nakamura, M. The effects of high oral magnesium supplementation on blood pressure, serum lipids and related variables in apparently healthy Japanese subjects. Br. J. Nutr. 2007, 78, 737–750.
- 54.
Kesteloot, H.; Geboers, J. Calcium and blood pressure. Lancet 1982, 319, 813–815.
- 55.
Allender, P.S.; Cutler, J.A.; Follmann, D.; et al. Dietary calcium and blood pressure: A meta-analysis of randomized clinical trials. Ann. Intern. Med. 1996, 124, 825–831.
- 56.
Darroudi, S.; Saberi-Karimian, M.; Tayefi, M.; et al. Association Between Hypertension in Healthy Participants and Zinc and Copper Status: A Population-Based Study. Biol. Trace Elem. Res. 2018, 190, 38–44.
- 57.
Li, Z.; Wang, W.; Liu, H.; et al. The association of serum zinc and copper with hypertension: A meta-analysis. J. Trace Elem. Med. Biol. 2019, 53, 41–48.
- 58.
Mousavi, S.M.; Mofrad, M.D.; Nascimento, I.J.B.; et al. The effect of zinc supplementation on blood pressure: A systematic review and dose–response meta-analysis of randomized-controlled trials. Eur. J. Nutr. 2020, 59, 1815–1827.
- 59.
Gao, C.; Sun, X.; Lu, L.; et al. Prevalence of gestational diabetes mellitus in mainland China: A systematic review and meta-analysis. J. Diabetes Investig. 2018, 10, 154–162.
- 60.
Hans, C.P.; Sialy, R.; Bansal, D.D. Magnesium deficiency and diabetes mellitus. Curr. Sci. 2002, 83, 1456–1463.
- 61.
Kareem, I.; Jaweed, S.A.; Bardapurkar, J.S.; et al. Study of magnesium, glycosylated hemoglobin and lipid profile in diabetic retinopathy. Indian J. Clin. Biochem. 2004, 19, 124–127.
- 62.
Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21.
- 63.
Resnick, L.M. Hypertension and abnormal glucose homeostasis: Possible role of divalent ion metabolism. Am. J. Med. 1989, 87, S17–S22.
- 64.
Chausmer, A.B. Zinc, Insulin and Diabetes. J. Am. Coll. Nutr. 1998, 17, 109–115.
- 65.
Li, Z.; Xu, Y.; Huang, Z.; et al. Association between exposure to arsenic, nickel, cadmium, selenium, and zinc and fasting blood glucose levels. Environ. Pollut. 2019, 255, 113325.
- 66.
Lin, J.; Shen, T. Association of dietary and serum selenium concentrations with glucose level and risk of diabetes mellitus: A cross sectional study of national health and nutrition examination survey, 1999–2006. J. Trace Elem. Med. Biol. 2021, 63, 126660.
- 67.
Edwards, J.R.; Prozialeck, W.C. Cadmium, diabetes and chronic kidney disease. Toxicol. Appl. Pharmacol. 2009, 238, 289–293.
- 68.
Guimaraes, M.M.; Martins, A.C.; Silva, M.S. Chromium nicotinate has no effect on insulin sensitivity, glycemic control, and lipid profile in subjects with type 2 diabetes. J. Am. Coll. Nutr. 2013, 32, 243–250.