- 1.
He, C.; Cheng, J; Zhang, X.; et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568.
- 2.
Jia, H.; Xing, Y.; Zhang, L.; et al. Progress of catalytic oxidation of typical chlorined volatile organic compounds (CVOCs): A review. Sci. Total Environ. 2023, 865, 161063.
- 3.
Han, W.; Kennedy, E.; Mackie, J.; et al. Conversion of a CFCs, HFCs and HCFCs waste mixture via reaction with methane. J. Hazard. Mater. 2010, 184, 696–703.
- 4.
Yu, H.; Kennedy, E.; Adesinab, A.; et al. A review of CFC and halon treatment technologies—The nature and role of catalysts. Catal. Surv. Asia 2006, 10, 40–54.
- 5.
Chen, Y.; Qu, W.; Luo, T.; et al. Promoting C–F bond activation via proton donor for CF4 decomposition. Proc. Natl. Acad. Sci. USA 2024, 120, e2312480120.
- 6.
Meng, X.; Dong, B.; Zhao, L.; et al. Synergistic regulation of charge state and electron-donating ability via heterojunctions design for fixation of electronegative greenhouse F-gases. Appl. Catal. B 2024, 364, 123709.
- 7.
Paunović, V.; Pérez-Ramírez, J. Catalytic halogenation of methane: A dream reaction with practical scope? Catal. Sci. Technol. 2019, 9, 4515–4530.
- 8.
Paunović, V.; Hemberger, P.; Bodi, A.; et al. Evidence of radical chemistry in catalytic methane oxybromination. Nat. Catal. 2018, 1, 363–370.
- 9.
He, J.; Xu, T.; Wang, Z.; et al. Transformation of methane to propylene: A two-step reaction route catalyzed by modified CeO2 nanocrystals and zeolites. Angew. Chem. Int. Ed. 2012, 51, 2438–2442.
- 10.
Gao, G.; Wei, L.; Liu, Z.; et al. Electron donation from boron suboxides via strong p–d orbital hybridization boosts molecular O2 activation on Ru/TiO2 for low-temperature dibromomethane oxidation. Environ. Sci. Technol. 2023, 57, 17566–17576.
- 11.
Molina, M.J.; Rowland, F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature 1974, 249, 810–812.
- 12.
Lin, H.; Liu, Y.; Deng, J.; et al. The advancement of supported bimetallic catalysts for the elimination of chlorinated volatile organic compounds. Catalysts 2024, 14, 531.
- 13.
Sheraz, M.; Anus, A.; Le, V.C.T.; et al. A comprehensive review of contemporary strategies and approaches for the treatment of HFC-134a. Greenh. Gases 2021, 11, 1118–1133.
- 14.
Takita, Y.; Tanabe, T.; Ito, M.; Decomposition of CH2FCF3 (134a) over metal phosphate catalysts. Ind. Eng. Chem. Res. 2002, 41, 2585–2590.
- 15.
Ma, Z.; Hua, W.; Tang, Y; et al. Catalytic hydrolysis of CFC-12 over solid acid Ti(SO4)2. Chin. Chem. Lett. 2000, 11, 311–314.
- 16.
Fu, X.; Zeltner, W.A.; Yang, Q; et al. Catalytic hydrolysis of dichlorodifluoromethane (CFC-12) on sol-gel-derived titania unmodified and modified with H2SO4. J. Catal. 1997, 168, 482–490.
- 17.
Ma, Z.; Hua, W.; Tang, Y; et al. Catalytic decomposition of CFC-12 on solid acids SO42−/MxOy (M = Zr, Ti, Sn, Fe, Al). Chin. J. Chem. 2000, 18, 241–245.
- 18.
Ma, Z.; Hua, W.; Tang, Y.; et al. Catalytic decomposition of CFC-12 over solid acids WO3/MxOy (M = Ti, Sn, Fe). J. Mol. Catal. A 2000, 159, 335–345.
- 19.
Ding, S.; Wu, S.; Wang, P.; et al. Structure-selectivity relevance of multiple-component catalysts for CVOCs’ complete oxidation: State-of-the-art and perspectives. Sep. Purif. Technol. 2025, 354, 128964.
- 20.
Yu, X.; Dai, L.; Deng, J.; et al. Catalytic performance and intermediates identification of trichloroethylene deep oxidation over Ru/3DOM SnO2 catalysts. J. Catal. 2021, 400, 310–324.
- 21.
Yu, X.; Dai, L.; Peng, Y.; et al. High selectivity to HCl for the catalytic removal of 1,2-dichloroethane over RuP/3DOM WOx: Insights into the effects of P-doping and H2O introduction. Environ. Sci. Technol. 2021, 55, 14906–14916.
- 22.
Wu, L.; Liu, Y.; Yu, X.; et al. Constructing bridge hydroxyl groups on the Ru/MOx/HZSM-5 (M = W, Mo) catalysts to promote the hydrolysis oxidation of multicomponent VOCs. Environ. Sci. Technol. 2024, 59, 945–955.
- 23.
Wu, L.; Deng, J.; Liu, Y.; et al. Enhanced removal efficiency of multicomponent VOCs over the Sn-doped silicalite-1-supported Ru Single-atom catalysts by constructing tightly coupled redox and acidic sites. Appl. Catal. B 2024, 351, 123910.
- 24.
Yu, X.; Deng, J.; Liu, Y.; et al. Enhanced water resistance and catalytic performance of Ru/TiO2 by regulating Brønsted acid and oxygen vacancy for the oxidative removal of 1,2-dichloroethane and toluene. Environ. Sci. Technol. 2022, 56, 11739–11749.
- 25.
Liu, X.; Zeng, J.; Wang, J.; et al. Catalytic oxidation of methyl bromide using ruthenium-based catalysts. Catal. Sci. Technol. 2016, 6, 4337–4345.
- 26.
Lv, L.; Wang, S.; Ding, Y.; et al. Reaction mechanism dominated by the Hard-Soft Acid-Base theory for the oxidation of CH2Cl2 and CH3Br over a titanium oxide-supported Ru catalyst. Ind. Eng. Chem. Res. 2020, 59, 7383–7388.
- 27.
Lv, L.; Wang, S.; Ding, Y.; et al. Mechanistic insights into the contribution of Lewis acidity to brominated VOCs combustion over titanium oxide supported Ru catalyst. Chemosphere 2021, 263, 128112.
- 28.
Tian, R.; Lu, J.; Xu, Z.; et al. Unraveling the synergistic reaction and the deactivation mechanism for the catalytic degradation of double components of sulfur-containing VOCs over ZSM-5-based materials. Environ. Sci. Technol. 2023, 57, 1443–1455.
- 29.
Wang, X.; Li, Z.; Gao, R.; et al. Photothermal catalytic removal of 1,2-DCE with high HCl selectivity over the Brønsted acid-enriched sulfur-doped MOFs. Environ. Sci. Technol. 2024, 58, 17190–17200.
- 30.
Zhang, C.; Gao, F.; Luo, N.; et al. Recent advances of chlorobenzene catalytic oxidation: influencing factors, roles of active sites and optimization. Sep. Purif. Technol. 2025, 376, 133962.
- 31.
Feng, Y.; Jiang, Y.; Hua, M.; et al. Cooking oil fumes: A comprehensive review of emission characteristics and catalytic oxidation strategies. ACS EST Eng. 2025, 5, 303–324.
- 32.
Li, Z.; Gao, R.; Hou, Z.; et al. Tandem supported Pt and ZSM-5 catalyst with separated catalytic functions for promoting multicomponent VOCs oxidation. Appl. Catal. B 2023, 339, 123131.
- 33.
Maupin, I.; Pinard, L.; Mijoin, J.; et al. Bifunctional mechanism of dichloromethane oxidation over Pt/Al2O3: CH2Cl2 disproportionation over alumina and oxidation over platinum. J. Catal. 2012, 291, 104–109.
- 34.
Bahareh, A.T.; Eskandari, S.; Khan, U.; et al. A review of preparation methods for supported metal catalysts. Adv. Catal. 2017, 61, 1–35.
- 35.
Munnik, P.; De Jongh, P.E.; De Jong, K.P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718.
- 36.
Zhang, Y.; Zhang, G.; Liu, J.; et al. Insight into the role of preparation method on the structure and size effect of Ni/MSS catalysts for dry reforming of methane. Fuel Process. Technol. 2023, 250, 107891.
- 37.
Wang, J.; Liu, X.; Zeng, J.; et al. Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts. Catal. Commun. 2016, 76,13–18.
- 38.
Deraz, N.M. The comparative jurisprudence of catalysts preparation methods: II. Deposition-precipitation and adsorption methods. J. Ind. Environ. Chem. 2018, 2, 1–3.
- 39.
Wang, T.; Liu, S.; Wang, L.; et al. High-performance Rh/CeO2 catalysts prepared by L-lysine-assisted deposition precipitation method for steam reforming of toluene. Fuel 2023, 341, 127736.
- 40.
Simon, P.; Zanfoni, N.; Avril, L.; et al. Nanoporous platinum doped cerium oxides thin films grown on silicon substrates: Ionic platinum localization and stability. Adv. Mater. Interfaces 2017, 4, 1600821.
- 41.
Hou, Z.; Lu, Y.; Liu, Y.; et al. A general dual-metal nanocrystal dissociation strategy to generate robust high-temperature-stable alumina-supported single-atom catalysts. J. Am. Chem. Soc. 2023, 145, 15869–15878.
- 42.
Qiu, J.; Peng, Y.; Tang, M.; et al. Catalytic activity, selectivity, and stability of co-precipitation synthesized Mn-Ce mixed oxides for the oxidation of 1,2-dichlorobenzene. Environ. Sci. Pollut. Res. Int. 2021, 28, 65416–65427.
- 43.
Wang, X.; Kang, Q.; Li, D. Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Appl. Catal. B 2009, 86, 166–175.
- 44.
Feng, X.; Zheng, Y.; Lin, D.; et al. Novel synthetic route to Ce-Cu-W-O microspheres for efficient catalytic oxidation of vinyl chloride emissions. Chin. J. Catal. 2020, 41, 1864–1872.
- 45.
Tian, M.; Jian, Y.; Ma, Y.; et al. Rational design of CrOx/LaSrMnCoO6 composite catalysts with superior chlorine tolerance and stability for 1,2-dichloroethane deep destruction. Appl. Catal. A 2019, 570, 62–72.
- 46.
Liu, J.; Wang, Y.; Dai, Z.; et al. Recent advances in Zeolite-Based catalysts for volatile organic compounds decontamination by thermal catalytic oxidation. Sep. Purif. Technol. 2024, 330, 125339.
- 47.
Wu, L.; Liu, Y.; Jia, Y.; et al. A novel strategy for enhancing resistance to chlorine, water, and sulfur oxide of the Pt/Co-ZSM-5 catalyst by synergistic coupling of acidity and redox sites for the oxidation of multicomponent VOCs. Appl. Catal. B 2025, 378, 125557.
- 48.
Gołąbek, K.; Palomares, A.E.; Martínez-Triguero, J.; et al. Ce-modified zeolite BEA catalysts for the trichloroethylene oxidation. The role of the different and necessary active sites. Appl. Catal. B 2019, 259, 118022.
- 49.
Sun, Q.; Yu, X.; Wu, L.; et al. Boosting catalytic and anti-fluorination performance of the Ru/vanadia–titania catalyst for the oxidative destruction of Freon by sulfuric acid modification. Environ. Sci. Technol. 2024, 58, 12719–12730.
- 50.
Karmakar, S.; Greene, H.L. An investigation of CFC12 (CCl2F2) decomposition on TiO2 catalyst. J. Catal. 1995, 151, 394–406.
- 51.
Li, Y.; Ren, Y.; Xiao, H.; et al. Recent advances of the effect of H2O on VOC oxidation over catalysts: Influencing factors, inhibition/promotion mechanisms, and water resistance strategies. Environ. Sci. Technol. 2025, 59, 1034–1059.
- 52.
Zhang, H.; Luo, T.; Long, Y.; et al. Identification of the active site during CF4 hydrolytic decomposition over γ-Al2O3. Environ. Sci. Nano 2022, 9, 954–963.
- 53.
Takita, Y.; Morita, C.; Ninomiya, M.; et al. Catalytic decomposition of CF4 over AlPO4-based catalyst. Chem. Lett. 1999, 417–418.
- 54.
Zhang, H.; Liu, K.; Chen, Y.; et al. Efficient and stable CF4 decomposition over θ-Al2O3 with extraordinary resistance to HF. Environ. Sci. Nano 2023, 10, 3149–3155.
- 55.
Luo, T.; Chen, Y.; Liu, K.; et al. Rational design of active sites in alumina-based catalysts to optimize antibonding-orbital occupancy for tetrafluoromethane decomposition. Environ. Sci. Nano 2023, 10, 3307–3316.
- 56.
Xu, X.; Jeon, J.Y.; Choi, M.H.; et al. The modification and stability of γ-Al2O3 based catalysts for hydrolytic decomposition of CF4. J. Mol. Catal. A. 2007, 266, 131–138.
- 57.
Jeon, H.; Oh, M.; Han, J.W.; et al. Understanding remarkable promotional effects of Zn on alumina in catalytic hydrolysis of perfluorocarbon. J. Catal. 2023, 426, 361–367.
- 58.
Li, Z.; Tan, X.; Ren, G.; et al. Equivalence of difluorodichloromethane (CFC-12) hydrolysis catalyzed by solid acid (base) MoO3(MgO)/ZrO2. RSC Adv. 2020, 10, 33662–33674.
- 59.
Takita, Y.; Wakamatsu, H.; Tokumaru, M.; et al. Decomposition of chlorofluorocarbons over metal phosphate catalysts III.: Reaction path of CCl2F2 decomposition over AlPO4. Appl. Catal. A 2000, 194, 55–61.
- 60.
Ning, P.; Wang, X.; Bart, H.; et al. Catalytic decomposition of CFC-12 over solid superacid Mo2O3/ZrO2. J. Environ. Eng. 2011, 137, 897–902.
- 61.
Han, T.U.; Yoo, B.S.; Kim, Y.M.; et al. Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a). Korean J. Chem. Eng. 2018, 35, 1611–1619.
- 62.
Swamidoss, C.M.A.; Sheraz, M.; Anus, A.; et al. Effect of Mg/Al2O3 and calcination temperature on the catalytic decomposition of HFC-134a. Catalysts 2019, 9, 270.
- 63.
Kim, M.J.; Kim, Y.; Youn, J.R.; et al. Effects of sulfuric acid treatment on the performance of Ga-Al2O3 for the hydrolytic decomposition of 1,1,1,2-tetrafluoroethane (HFC-134a). Catalysts 2020, 10, 766.
- 64.
El-Bahy, Z.; Ohnishi, R.; Ichikawa, M. Hydrolysis of CF4 over alumina-based binary metal oxide catalysts. Appl. Catal. B 2003, 40, 81–91.
- 65.
Digne, M.; Sautet, P.; Raybaud, P.; et al. Hydroxyl groups on γ-alumina surfaces: A DFT study. J. Catal. 2002, 211, 1–5.
- 66.
Nortier, P.; Fourre, P.; Mohammed Saad, A.B.; et al. Effects of crystallinity and morphology on the surface properties of alumina. Appl. Catal. 1990, 61, 141–160.
- 67.
Murrayrust, P.; Stallings, W.; Monti, C.; et al. Intermolecular interactions of the C–F bond: The crystallographic environment of fluorinated carboxylic acids and related structures. J. Am. Chem. Soc. 1983, 105, 3206–3214.
- 68.
Cormanich, R.A.; Rittner, R.; Freitas, M.P.; et al. The seeming lack of CF…HO intramolecular hydrogen bonds in linear aliphatic fluoroalcohols in solution. Phys. Chem. Chem. Phys. 2014, 16, 19212–19217.
- 69.
Luo, T.; Zhang, H.; Chen, Y.; et al. Unveiling tetrafluoromethane decomposition over alumina catalysts. J. Am. Chem. Soc. 2024, 146, 35057–35063.
- 70.
Wang, X.; Fu, J.; Zhang, H.; et al. Detoxification of carbonaceous species for efficient perfluorocarbon hydrolysis. Environ. Sci. Technol. 2025, 59, 3309–3315.
- 71.
Takita, Y.; Moriyama, J.; Yoshinaga, Y.; et al. Adsorption of water vapor on the AlPO4-based catalysts and reaction mechanism for CFCs decomposition. Appl. Catal. A 2004, 271, 55–60.
- 72.
Ng, C.F.; Shan, S.; Lai, S. Catalytic decomposition of CFC-12 on transition metal chloride promoted γ-alumina. Appl. Catal. B 1998, 16, 209–217.
- 73.
Gong-Liang, L.; Hiroyasu, N.; Tatsumi, I.; et al. Catalytic dehydrouorination of CF3CH3(HFC143a) into CF2CH2(HFC1132a). Appl. Catal. B 1998, 16, 309–317.
- 74.
Tu, C.; Zhang, H.; Wang, X.; et al. Phase-Engineered ZrO2 for tuning catalytic oxidation of dichloromethane over W/ZrO2: Zr-doped WOx clusters and the hydrolysis-oxidation mechanism. Environ. Sci. Technol. 2025, 58, 2838−2848.
- 75.
Wang, W.; Zhu, Q.; Dai, Q.; et al. Fe doped CeO2 nanosheets for catalytic oxidation of 1,2-dichloroethane: Effect of preparation method. Chem. Eng. J. 2017, 307, 1037–1046.
- 76.
Zhang, X.; Dai, L.; Liu, Y.; et al. Effect of support nature on catalytic activity of the bimetallic RuCo nanoparticles for the oxidative removal of 1,2-dichloroethane. Appl. Catal. B 2021, 285, 119804.
- 77.
Tian, M.; Guo, X.; Dong, R.; et al. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Appl. Catal. B 2019, 259, 118018.
- 78.
Cao, S.; Wang, H.; Yu, F.; et al. Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2. J. Colloid Interface Sci. 2016, 463, 233–241.
- 79.
Dai, Q.; Zhang, Z.; Yan, J.; et al. Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane. Environ. Sci. Technol. 2018, 52, 13430–13437.
- 80.
Zhang, X.; Liu, Y.; Deng, J.; et al. Alloying of gold with palladium: An effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Appl. Catal. B 2019, 257, 117879.
- 81.
Gao, R.; Zhang, M.; Liu, Y.; et al. Engineering platinum catalysts via a site-isolation strategy with enhanced chlorine resistance for the elimination of multicomponent VOCs. Environ. Sci. Technol. 2022, 56, 9672−9682.
- 82.
Zhang, X.; Liu, Y.; Deng, J.; et al. Three-dimensionally ordered macroporous Cr2O3−CeO2: High-performance catalysts for the oxidative removal of trichloroethylene. Catal. Today 2020, 339, 200–209.
- 83.
Scirè, S.; Minicò, S.; Crisafulli, C. Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Appl. Catal. B 2003, 45, 117–125.
- 84.
He, C.; Yu, Y.; Shi, J.; et al. Mesostructured Cu–Mn–Ce–O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course. Mater. Chem. Phys. 2015, 157, 87–100.
- 85.
Gu, Y.; Cai, T.; Gao, X.; et al. Catalytic combustion of chlorinated aromatics over WOx/CeO2 catalysts at low temperature. Appl. Catal. B 2019, 248, 264–276.
- 86.
Deng, Y.; Shang, Y.; Huang, T.; et al. Reversing the HCl/Cl2 selectivity for efficient catalytic elimination of dichloromethane by incorporation of Ti4+ into CeO2 lattice. Appl. Catal. B 2025, 373, 125338.
- 87.
Van den Brink, R.W.; Mulder, P.; Louw, R.; et al. Catalytic oxidation of dichloromethane on γ-Al2O3: A combined flow and infrared spectroscopic study. J. Catal. 1998, 180, 153–160.
- 88.
Yang, Y.; Liu, S.; Zhao, H.; et al. Promotional effect of doping Cu into cerium-titanium binary oxides catalyst for deep oxidation of gaseous dichloromethane. Chemosphere 2019, 214, 553–562.
- 89.
Yin, L.; Lu, G.; Gong, X. A DFT+U study of the catalytic degradation of 1,2-dichloroethane over CeO2. Phys. Chem. Chem. Phys. 2018, 20, 5856–5864.
- 90.
Fei, Z.; Cheng, C.; Chen, H.; et al. Construction of uniform nanodots CeO2 stabilized by porous silica matrix for 1,2-dichloroethane catalytic combustion. Chem. Eng. J. 2019, 370, 916–924.
- 91.
Yang, P.; Xue, X.; Meng, Z.; et al. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds. Chem. Eng. J. 2013, 234, 203–210.
- 92.
Lin, F.; Xiang, L.; Zhang, Z.; et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit. Rev. Environ. Sci. Technol. 2020, 52, 311–355.
- 93.
Wang, L.; Wang, C.; Xie, H.; et al. Catalytic combustion of vinyl chloride over Sr doped LaMnO3. Catal. Today 2019, 327, 190–195.
- 94.
Zhang, C.; Wang, C.; Zhan, W.; et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Appl. Catal. B 2013, 129, 509–516.
- 95.
Huang, H.; Dai, Q.; Wang, X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl. Catal. B 2014, 158–159, 96–105.
- 96.
Van Den Brink, R.W.; Louw, R.; Mulder, P. Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al203 catalyst. Appl. Catal. B 1998, 16, 219–226.
- 97.
Sun, P.; Wang, W.; Dai, X.; et al. Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Appl. Catal. B 2016, 198, 389–397.
- 98.
Gao, F.; Chen, D.; Luo, N.; et al. Catalytic performance and reaction mechanism of chlorobenzene oxidation over MnOx-CeO2 catalyst. Chem. J. Chin. Univ. 2023, 44, 20220690.
- 99.
Long, G.; Chen, M.; Li, Y.; et al. One-pot synthesis of monolithic Mn-Ce-Zr ternary mixed oxides catalyst for the catalytic combustion of chlorobenzene. Chem. Eng. J. 2018, 360, 964–973.
- 100.
Mei, J.; Xie, J.; Qu, Z.; et al. Ordered mesoporous spinel Co3O4 as a promising catalyst for the catalytic oxidation of dibromomethane. Mol. Catal. 2018, 461, 60–66.
- 101.
Mei, J.; Ke, Y.; Yu, Z.; et al. Morphology-dependent properties of Co3O4/CeO2 catalysts for low temperature dibromomethane (CH2Br2) oxidation. Chem. Eng. J. 2017, 320, 124–134.
- 102.
Mei, J.; Huang, W.; Qu, Z.; et al. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism. J. Colloid Interface Sci. 2017, 505, 870–883.
- 103.
Gao, G.; Hou, J.; Fan, Y.; et al. Stabilizing Ru-Based catalysts against bromine poisoning through Ru–O Covalency regulation for durable brominated volatile organic compound oxidation. Environ. Sci. Technol. 2025, 59, 15504–15514.
- 104.
Mei, J.; Zhao, S.; Huang, W.; et al. Mn-Promoted Co3O4/TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2). J. Hazard. Mater. 2016, 318, 1–8.
- 105.
Mei, J.; Xie, J.; Sun, Y.; et al. Design of Co3O4/CeO2–Co3O4 hierarchical binary oxides for the catalytic oxidation of dibromomethane. J. Ind. Eng. Chem. 2019, 73, 134–141.
- 106.
Mei, J.; Qu, Z.; Zhao, S.; et al. Promoting effect of Mn and Ti on the structure and performance of Co3O4 catalysts for oxidation of dibromomethane. J. Ind. Eng. Chem. 2017, 57, 208–215.
- 107.
Lv, L.; Wang, S.; Ding, Y.; et al. Deactivation mechanism and anti-deactivation modification of Ru/TiO2 catalysts for CH3Br oxidation. Chemosphere 2020, 257, 127249.
- 108.
Chen, C.Y.; Pignatello, J.J. Catalytic oxidation for elimination of methyl bromide fumigation emissions using ceria-based catalysts. Appl. Catal. B 2013, 142–143, 785–794.