- 1.
Sun, Z.L.; Chen, Z.S.; Wang, S.H.; et al. Nuclear energy: Where next? Innovation 2026, 7, 101093.
- 2.
Tai, X.S.; Sun, Z.L. Extra-high extraction of uranium from seawater by covalent organic frameworks through structure geometry and functional active site modification. Sustain. Carbon. Mater. 2025, 1, e006.
- 3.
Chen, T.; Liu, T.; Zhou, L.; et al. Ternary boron carbon nitrides hollow nanotubes with tunable p-n homojunction for photo-assisted uranium extraction: A combined batch, EXAFS and DFT calculations. Appl. Catal. B Environ. 2022, 318, 121815.
- 4.
Chen, X.T.; He, L.F.; Wang, Y.; et al. Trace analysis of uranyl ion (UO22+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect. Anal. Chim. Acta 2014, 847, 55–60.
- 5.
Averseng, O.; Hagège, A.; Taran, F.; et al. Surface plasmon resonance for rapid screening of uranyl affine proteins. Anal. Chem. 2010, 82, 9797–9802.
- 6.
Fukuda, S.; Ikeda, M.; Nakamura, M.; et al. Acute toxicity of subcutaneously administered depleted uranium and the effects of CBMIDA in the simulated wounds of rats. Health Phys. 2009, 96, 483–492.
- 7.
Lourenço, J.; Pereira, R.; Gonçalves, F.; et al. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area. Sci. Total Environ. 2013, 443, 673–680.
- 8.
Selvakumar, R.; Ramadoss, G.; Menon, M.P.; et al. Challenges and complexities in remediation of uranium contaminated soils: A review. J. Environ. Radioact. 2018, 192, 592–603.
- 9.
Yildiz, E.; Saçmaci, S.; Kartal, S.; et al. A new chelating reagent and application for coprecipitation of some metals in food samples by FAAS. Food Chem. 2016, 194, 143–148.
- 10.
Balaram, V. Recent advances in the determination of elemental impurities in pharmaceuticals-status, challenges and moving frontiers. Trends Anal. Chem. 2016, 80, 83–95.
- 11.
Santos, J.S.; Teixeira, L.S.G.; dos Santos, W.N.L.; et al. Uranium determination using atomic spectrometric techniques: An overview. Anal. Chim. Acta 2010, 674, 143–156.
- 12.
Sanyal, K.; Khooha, A.; Das, G.; et al. Direct determination of oxidation states of uranium in mixed-valent uranium oxides using total reflection X-ray fluorescence X-ray absorption near-edge spectroscopy. Anal. Chem. 2017, 89, 871–876.
- 13.
Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. Atomic spectroscopy: A review. Anal. Chem. 2010, 82, 4653–4681.
- 14.
Hellé, G.; Mariet, C.; Cote, G. Liquid-liquid extraction of uranium(VI) with aliquat® 336 from HCl media in microfluidic devices: Combination of micro-unit operations and online ICP-MS determination. Talanta 2015, 139, 123–131.
- 15.
Kalita, M.P.C.; Deka, K.; Das, J.; et al. X-ray diffraction line profile analysis of chemically synthesized lead sulphide nanocrystals. Mater. Lett. 2012, 87, 84–86.
- 16.
Ajitha, B.; Reddy, Y.A.K.; Kim, M.J.; et al. Superior catalytic activity of synthesized triangular silver nanoplates with optimized sizes and shapes. Catal. Sci. Technol. 2016, 6, 8289–8299.
- 17.
Nasrollahzadeh, M.; Zahraei, A.; Ehsani, A.; et al. Synthesis, characterization, antibacterial and catalytic activity of a nanopolymer supported copper(II) complex as a highly active and recyclable catalyst for the formamidation of arylboronic acids under aerobic conditions. RSC Adv. 2014, 4, 20351–20357.
- 18.
Rasheed, T.; Bilal, M.; Nabeel, F.; et al. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci. Total Environ. 2018, 615, 476–485.
- 19.
Ullah, N.; Mansha, M.; Khan, I.; et al. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. Trends Anal. Chem. 2018, 100, 155–166.
- 20.
He, W.W.; Hua, D.B. Spectrographic sensors for uranyl detection in the environment. Talanta 2019, 201, 317–329.
- 21.
Wu, X.M.; Huang, Q.X.; Mao, Y.; et al. Sensors for determination of uranium: A review. Trends Anal. Chem. 2019, 118, 89–111.
- 22.
Chen, Z.; Zhang, Z.Y.; Qi, J.; et al. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2023, 441, 129889.
- 23.
Fan, Y.J.; Li, J.W.; Guo, Y.P.; et al. Digital image colorimetry on smartphone for chemical analysis: A review. Measurement 2021, 171, 108829.
- 24.
Hou, D.B.; Zhang, J.; Chen, L.; et al. Water quality analysis by UV-Vis spectroscopy: A review of methodology and application. Spectrosc. Spectr. Anal. 2013, 33, 1839–1844.
- 25.
Zhang, H.Y.; Ruan, Y.J.; Lin, L.; et al. A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme. Spectrochim. Acta A 2015, 146, 1–6.
- 26.
Wang, H.P.; Chen, P.; Dai, J.W.; et al. Recent advances of chemometric calibration methods in modern spectroscopy: Algorithms, strategy, and related issues. Trends Anal. Chem. 2022, 153, 116648.
- 27.
Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.X.; et al. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577.
- 28.
Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; et al. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87.
- 29.
Zhou, B.; Shi, L.F.; Wang, Y.S.; et al. Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim. Acta A 2013, 110, 419–424.
- 30.
Li, S.J.; Liao, L.F.; Wu, R.R.; et al. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe. Anal. Bioanal. Chem. 2015, 407, 8911–8918.
- 31.
Lu, Y.Y.; Liang, X.Q.; Niyungeko, C.; et al. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338.
- 32.
Tang, X.; Han, H.; Li, L.; et al. Electrodes functionalized with advanced recognition materials for trace electrochemical sensing of uranyl ion. Microchem. J. 2024, 199, 109924.
- 33.
Wang, S.S.; Zhang, J.B.; Gharbi, O.; et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 2021, 1, 50.
- 34.
Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61.
- 35.
Pacella, N.; DeRouin, A.; Pereles, B.; et al. Geometrical modification of magnetoelastic sensors to enhance sensitivity. Smart Mater. Struct. 2015, 24, 025018.
- 36.
Zhang, H.; Lin, L.; Zeng, X.; et al. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment. Biosens. Bioelectron. 2016, 78, 73–79.
- 37.
Wu, X.M.; Mao, Y.; Wang, D.Y.; et al. Designing a colorimetric sensor containing nitrogen and oxygen atoms for uranyl ions identification: Chromatic mechanism, binding feature and on-site application. Sens. Actuators B 2020, 307, 127681.
- 38.
Liang, Y.; He, Y. Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim. Acta 2016, 183, 407–413.
- 39.
Drogat, N.; Jauberty, L.; Chaleix, V.; et al. Sensing of the uranyl ion based on its complexation with bisphosphonate-capped gold nanoparticles. Mater. Lett. 2014, 122, 208–211.
- 40.
Zhang, D.Y.; Chen, Z.; Omar, H.; et al. Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl. Mater. Interfaces 2015, 7, 4589–4594.
- 41.
Saha, A.; Neogy, S.; Rao, D.R.M.; et al. Colorimetric and visual determination of ultratrace uranium concentrations based on the aggregation of amidoxime functionalized gold nanoparticles. Microchim. Acta 2019, 186, 183.
- 42.
Zhang, L.S.; Huang, D.S.; Zhao, P.X.; et al. Colorimetric detection for uranyl ions in water using vinylphosphonic acid functionalized gold nanoparticles based on smartphone. Spectrochim. Acta A 2022, 269, 120748.
- 43.
Xu, Y.L.; Wei, J.H.; Chen, X.W. Visible light-responsive sulfone-based covalent organic framework as metal-free nanoenzyme for visual colorimetric determination of uranium. Chemosensors 2022, 10, 248.
- 44.
Xiao, S.J.; Huang, J.; Qiu, A.T.; et al. Advanced "turn-on" colorimetric uranium platform based on the enhanced nanozyme activity of a donor-acceptor structured covalent organic framework. Anal. Chim. Acta 2024, 1302, 342503.
- 45.
Amini, A.; Khajeh, M.; Oveisi, A.R.; et al. A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions. J. Ind. Eng. Chem. 2021, 93, 322–332.
- 46.
Bai, F.; Yang, X.; Yang, C.; et al. Amidoxime covalent organic framework@Fe3O4 based magnetic solid-phase extraction for rapid and sensitive determination of trace uranium in seafood. J. Chromatogr. A 2025, 1740, 465564.
- 47.
Zhang, J.J.; Cheng, F.F.; Li, J.J.; et al. Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives. Nano Today 2016, 11, 309–329.
- 48.
Saha, A.; Debnath, T.; Neogy, S.; et al. Micellar extraction assisted fluorometric determination of ultratrace amount of uranium in aqueous samples by novel diglycolamide-capped quantum dot nanosensor. Sens. Actuators B 2017, 253, 592–602.
- 49.
Liu, W.; Dai, X.; Bai, Z.L.; et al. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: A combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 2017, 51, 3911–3921.
- 50.
Liu, W.; Dai, X.; Wang, Y.L.; et al. Ratiometric monitoring of thorium contamination in natural water using a dual-emission luminescent europium organic framework. Environ. Sci. Technol. 2019, 53, 332–341.
- 51.
Wang, Z.; Xu, C.; Lu, Y.X.; et al. Microplasma electrochemistry controlled rapid preparation of fluorescent polydopamine nanoparticles and their application in uranium detection. Chem. Eng. J. 2018, 344, 480–486.
- 52.
Zhang, Z.; Zhang, D.; Shi, C.; et al. 3,4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions. Environ. Sci. Nano 2019, 6, 1457–1465.
- 53.
Zheng, Z.J.; Zhang, L.; Wang, L.Z.; et al. Ultrasensitive detection of UO22+ based on dopamine-functionalized MoOx quantum dots. Luminescence 2022, 37, 127–133.
- 54.
Ghosh, M.; Swain, K.K.; Singh, P.K. Thioflavin-T incorporated cerium-ATP coordination polymer nanoparticles: A promising system for detection of uranyl ion (UO22+) in aqueous medium. Langmuir 2023, 39, 7017–7028.
- 55.
Chen, X.F.; Mei, Q.S.; Yu, L.; et al. Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform. ACS Appl. Mater. Interfaces 2018, 10, 42225–42232.
- 56.
Feng, T.T.; Zhao, S.L.; Cao, M.; et al. Highly sensitive and specific uranyl ion detection by a fluorescent sensor containing uranyl-specific recognition sites. Sci. Bull. 2025, 70, 70–77.
- 57.
Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; et al. Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626.
- 58.
Sharma, B.; Frontiera, R.R.; Henry, A.I.; et al. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25.
- 59.
Gai, T.; Jiang, J.L.; Wang, S.F.; et al. Photoreduced Ag+/sodium alginate supramolecular hydrogel as a sensitive SERS membrane substrate for rapid detection of uranyl ions. Anal. Chim. Acta 2024, 1316, 342826.
- 60.
Gai, T.; Jiang, J.L.; Wang, S.F.; et al. Highly sensitive and selective determination of uranyl ions based on Ag/ Ag2O-COF composite SERS substrate. Talanta 2024, 277, 126407.
- 61.
Wang, S.F.; Zou, S.M.; Yang, S.L.; et al. HfO2-wrapped slanted Ag nanorods array as a reusable and sensitive SERS substrate for trace analysis of uranyl compounds. Sens. Actuators. B. Chem. 2018, 265, 539–546.
- 62.
Jiang, J.L.; Ma, L.W.; Chen, J.; et al. SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim. Acta 2017, 184, 2775–2782.
- 63.
He, X.; Wang, S.F.; Liu, Y.; et al. Ultra-sensitive detection of uranyl ions with a specially designed high-efficiency SERS-based microfluidic device. Sci. China Chem. 2019, 62, 1064–1071.
- 64.
Wang, N.; Du, J.J.; Li, X.; et al. Magnetic MOF substrates for the rapid and sensitive surface-enhanced raman scattering detection of uranyl. Anal. Chem. 2023, 95, 12956–12963.
- 65.
Sun, C.M.; Dong, W.R.; Peng, J.X.; et al. Dual-mode fluorescence-SERS sensor for sensitive and selective detection of uranyl ions based on satellite Fe3O4-Au@CdTe nanostructure. Sens. Actuators. B. Chem. 2020, 325, 128644.
- 66.
Wang, S.F.; Jiang, J.L.; Wu, H.X.; et al. Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl(VI) ions. Spectrochim. Acta A 2017, 180, 23–28.
- 67.
Jiang, J.L.; Wang, S.F.; Deng, H.; et al. Rapid and sensitive detection of uranyl ion with citrate-stabilized silver nanoparticles by the surface-enhanced Raman scattering technique. R. Soc. Open Sci. 2018, 5, 181099.
- 68.
Yuan, C.; Ge, H.W.; Cao, B.M.; et al. SERS detection of uranyl based on MOF-coated gold nanooctahedron hybrid. Anal. Sci. 2024, 40, 2111–2116.
- 69.
Lu, W.; Band, B.S.F.; Yu, Y.; et al. Resonance light scattering and derived techniques in analytical chemistry: Past, present, and future. Microchim. Acta 2007, 158, 29–58.
- 70.
Shang, L.; Chen, H.J.; Deng, L.; et al. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design. Biosens. Bioelectron. 2008, 23, 1180–1184.
- 71.
Zhou, B.; Wang, Y.S.; Yang, H.X.; et al. A sensitive resonance light scattering assay for uranyl ion based on the conformational change of a nuclease-resistant aptamer and gold nanoparticles acting as signal reporters. Microchim. Acta 2014, 181, 1353–1360.
- 72.
Shrivastava, A.; Sharma, J.; Soni, V. Various electroanalytical methods for the determination of uranium in different matrices. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 113–129.
- 73.
Zhou, Z.P.; Zhou, Y.M.; Liang, X.Z.; et al. Electrochemical sensor for uranium monitoring in natural water based on poly Nile blue modified glassy carbon electrode. J. Solid. State Electrochem. 2022, 26, 1139–1149.
- 74.
Ghoreishi, S.M.; Behpour, M.; Mazaheri, S.; et al. Uranyl sensor based on a N,N'-bis(salicylidene)-2-hydroxy-phenylmethanediamine and multiwall carbon nanotube electrode. J. Radioanal. Nucl. Chem. 2012, 293, 201–210.
- 75.
Li, Y.J.; Wang, Z.M.; Liu, C.; et al. Graphene oxide modified H4L-ion imprinting electrochemical sensor for the detection of uranyl ions. Z. Anorg. Allg. Chem. 2021, 647, 1914–1920.
- 76.
Zhou, Z.P.; Zhou, Y.M.; Liang, X.Z.; et al. Sensitive detection of uranium in water samples using differential pulse adsorptive stripping voltammetry on glassy carbon electrode. J. Radioanal. Nucl. Chem. 2019, 322, 2049–2056.
- 77.
Wen, Y.; Sun, Y.C.; Liu, Y.T.; et al. Green synthesis of 2% g-C3N4/SnS2-V3/CQD1 composite photocatalyst from waste plant soot for efficient U(VI) removal: Mechanistic insights. Chem. Eng. J. 2024, 494, 153247.
- 78.
Guo, Y.X.; Liu, H.W.; Cao, H.; et al. Complexation of uranyl with benzoic acid in aqueous solution at variable temperatures: Potentiometry, spectrophotometry and DFT calculations. Dalton Trans. 2023, 52, 11265–11271.
- 79.
Xie, X.; Tian, Y.; Qin, Z.; et al. Complexation of manganese with glutarimidedioxime: Implication for extraction uranium from seawater. Sci. Rep. 2017, 7, 43503.
- 80.
Akl, Z.F.; Ali, T.A. A novel modified screen-printed electrode with triazole surfactant assembled on silver nanoparticles for potentiometric determination of uranium. J. Radioanal. Nucl. Chem. 2017, 314, 1865–1875.
- 81.
Yang, M.; Liao, L.F.; Zhang, G.L.; et al. Detection of uranium with a wireless sensing method by using salophen as receptor and magnetic nanoparticles as signal-amplifying tags. J. Radioanal. Nucl. Chem. 2013, 298, 1393–1399.
- 82.
Sun, Z.L.; Chen, Z.S.; Tai, X.S.; et al. Uranium extraction from seawater: Methods and challenges. Sci. China Chem. 2025, 68, 3923–3926.
- 83.
Wei, G.; Chen, Z.S.; Tai, X.S.; et al. Recent progress of uranium extraction and its catalytic applications. Trans. Tianjin Univ. 2025, 31, 390–402.
- 84.
Sun, Z.L.; Liao, Y.; Zhang, Y.Y. Sustainable carbon materials in environmental and energy applications. Sustain. Carbon. Mater. 2025, 1, e007.
- 85.
Wang, Z.; Lu, Y.X.; Yuan, H.; et al. Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale 2015, 7, 20743–20748.
- 86.
Sun, Z.L.; Wang, X.K. Covalent metal-organic frameworks: Emerging star materials for seawater uranium harvesting. Sci. Sin. Chim. 2025, 55, 1–2.
- 87.
Liang, L.Y.; Qin, F.P.; Wang, S.; et al. Overview of the materials design and sensing strategies of nanopore devices. Coord. Chem. Rev. 2023, 478, 214998.
- 88.
Lu, Y.F.; Yu, L.; Zhang, S.L.; et al. Dual-functional fluorescent metal-organic framework based beads for visual detection and removal of oxytetracycline in real aqueous solution. Appl. Surf. Sci. 2023, 625, 157202.
- 89.
Jin, K.; Lee, B.; Park, J. Metal-organic frameworks as a versatile platform for radionuclide management. Coord. Chem. Rev. 2021, 427, 213473.
- 90.
Sun, Y.F.; Yu, L.; Wu, K.L.; et al. Non-rare earth doped metal-organic framework for fluorescent detection of uranyl in real seawater. Sens. Actuators. B. Chem. 2025, 436, 137643.
- 91.
Wang, Y.; Xing, S.H.; Zhang, X.; et al. A family of functional Ln-organic framework constructed by iodine-substituted aromatic polycarboxylic acid for turn-off sensing of UO22+. Appl. Organomet. Chem. 2019, 33, e4898.
- 92.
Cao, X.H.; Sun, Y.B.; Wang, Y.C.; et al. PtRu bimetallic nanoparticles embedded in MOF-derived porous carbons for efficiently electrochemical sensing of uranium. J. Solid. State Electrochem. 2021, 25, 425–433.
- 93.
Niu, C.P.; Zhang, C.R.; Cui, W.R.; et al. A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. J. Hazard. Mater. 2022, 425, 127951.
- 94.
Zhen, D.S.; Liu, C.L.; Deng, Q.H.; et al. Novel olefin-linked covalent organic framework with multifunctional group modification for the fluorescence/smartphone detection of uranyl ion. ACS Appl. Mater. Interfaces 2024, 16, 27804–27812.
- 95.
Guo, X.T.; Wang, X.Y.; Wen, S.Z.; et al. Silver nanoparticle-grafted amidoxime covalent organic framework: A Highly sensitive and selective SERS substrate for uranium detection in natural water systems. Adv. Funct. Mater. 2025, 35, 2500901.
- 96.
Chen, Z.J.; Liu, J.Q.; Wang, W.Y.; et al. Aptamer-regulated colorimetric and electrochemical dual-mode sensor for the detection of uranyl ions utilizing AuNCs@COF composite. Microchim. Acta 2025, 192, 295.
- 97.
Lu, H.; Fu, D.; Tai, X.S.; et al. Metal-organic frameworks/covalent-organic frameworks-based materials in organic/inorganic pollutant elimination and CO2 reduction applications. ChemNanoMat 2025, 11, e202500244.
- 98.
Qian, H.L.; Wang, Y.; Yan, X.P. Covalent organic frameworks for environmental analysis. Trends Anal. Chem. 2022, 147, 116516.
- 99.
Zhao, Y.; Yan, Y.; Wu, Z.; et al. A novel fluorescent covalent organic framework for the selective detection of fluoride ion. J. Mater. Sci. 2022, 57, 13425–13432.
- 100.
Leng, R.; Sun, Y.C.; Wang, C.Z.; et al. Design and fabrication of hypercrosslinked covalent organic adsorbents for selective uranium extraction. Environ. Sci. Technol. 2023, 57, 9615–9626.
- 101.
Kangas, L.J.; Keller, P.E.; Siciliano, E.R.; et al. The use of artificial neural networks in PVT-based radiation portal monitors. Nucl. Instrum. Methods Phys. Res., Sect. A 2008, 587, 398–412.
- 102.
Smith, R.; Spano, T.L.; McDonnell, M.; et al. Interpretable machine learning models classify minerals via spectroscopy. Sci. Rep. 2025, 15, 15807.
- 103.
Wabwile, J.M.; Angeyo, H.K.; Massop, A.D. Exploring band-free Raman microspectrometry combined with PCA and MCR-ALS for size-resolved forensic analysis of uranium in aerosols in a model nuclear atmosphere. J. Environ. Radioact. 2023, 270, 107295.
- 104.
Jung, Y.E.; Ahn, S.K.; Yim, M.S. Investigation of neural network-based cathode potential monitoring to support nuclear safeguards of electrorefining in pyroprocessing. Nucl. Eng. Technol. 2022, 54, 644–652.
- 105.
Bae, J.W.; Hu, J.W. Machine learning framework for predicting uranium enrichments from M400 CZT gamma spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 2024, 1068, 169705.
- 106.
Zhang, Y.; Ye, Y.J.; Qiu, J.; et al. Study on quantitative interpretation of uranium spectral gamma-ray logging based on machine learning algorithm. Nucl. Eng. Technol. 2024, 56, 4959–4965.
- 107.
Kwan, C.; Ayhan, B.; Stavola, A.; et al. A fast framework for generating radioactive mixture dpectra and its application to remote high-performance mixture identification. Electronics 2025, 14, 1688.
- 108.
Wang, Z.H.; Zhou, Y.G.; Zhou, T.; et al. Identification of optimal metal-organic frameworks by machine learning: Structure decomposition, feature integration, and predictive modeling. Comput. Chem. Eng. 2022, 160, 107739.