2512002615
  • Open Access
  • Article

Hierarchical Sandwich-Type Hetero-Wetting Nanofibrous Membrane toward Nano-Scaled Oil/Water Emulsion Separation

  • Linlin Yan 1,2,   
  • Mengmeng Zhang 1,   
  • Chen Chen 1,   
  • Mi Zhou 1,   
  • Kai Wang 1,2,   
  • Yuhua Gao 3,   
  • Pengcheng Liu 2,   
  • Dalong Li 1,   
  • Xiquan Cheng 1,2,*

Received: 10 Oct 2025 | Revised: 30 Nov 2025 | Accepted: 23 Dec 2025 | Published: 14 Jan 2026

Highlights

  • The hetero-wetting nanofibrous membrane with sandwich structure was fabricated
  • A novel "sieving-repulsion-adsorption" separation mechanism was proposed
  • The membrane can efficiently remove oil droplets sub-150 nm (TOC less than 3 ppm)
  • The membrane has superior cycle stability for oil/water emulsion separation

Abstract

The ever-increasing discharge of oily sewage poses serious threats to marine ecosystem and human health, which has become a severe environmental problem globally. With high porosity, interconnected porous architectures and tunable surface wettability, superwetting nanofiber membranes have been proven effective in remediating oily sewage. However, constrained by their micron-scale pores, nanofiber membranes demonstrate insufficient separation efficiency for sub-150 nm emulsified oil droplets, making it difficult to meet the standards of regulations for discharging oily sewage in various countries and regions. Herein, a “sieving-repulsion-adsorption” mechanism was proposed to break the limitation of “trade-off” between permeability and selectivity via the designed hetero-wetting nanofiber membrane, which was engineered by intercalating discrete hydrophobic polydimethylsiloxane (PDMS) microdomains between hydrophilic polyethylene oxide (PEO)-based hydrogels modified polyacrylonitrile (PAN) nanofiber membranes. The hetero-wetting architecture improves water transport under the synergistic effect of hydrophobic/hydrophilic layers while captures the tiny oil droplets via hydrophobic/oleophilic PDMS microdomains, thereby achieving high emulsion permeance of 22,308 L⋅m−2⋅h−1⋅bar−1 with high separation efficiency of 99.97% and total organic carbon (TOC) content less than 3 ppm. Notably, the membrane demonstrates exceptional fouling resistance (94.6% permeance recovery) and cyclic stability, outperforming most previously reported state-of-the-art nanofiber membranes. This sandwich-type hetero-wetting nanofibrous membrane provides new insights into advanced membranes fabrication for low-carbon and efficient treatment of nano-scaled oil-in-water emulsions.

Graphical Abstract

References 

  • 1.

    Wang, Z.; Guo, P.; Heng, L.; et al. Nano/Submicrometer-Emulsion Oily Wastewater Treatment Inspired by Plant Transpiration. Matter 2021, 4, 1274–1286. 

  • 2.

    He, L.; Qi, X.; Wei, W.; et al. Biomass-Activated Carbon-Based Superhydrophobic Sponge with Photothermal Properties for Adsorptive Separation of Waste Oil. J. Hazard. Mater. 2024, 477, 135222.

  • 3.

    Cui, W.; Fan, T.; Li, Y.; et al. Robust Functional Janus Nanofibrous Membranes for Efficient Harsh Environmental Air Filtration and Oil/Water Separation. J. Membr. Sci. 2022, 663, 121018. 

  • 4.

    Tong, Y.; Qi, M.; Sun, P.; et al. Estimation of Unintended Treated Wastewater Contributions to Streams in the Yangtze River Basin and the Potential Human Health and Ecological Risk Analysis. Environ. Sci. Technol. 2022, 56, 5590–5601. 

  • 5.

    Tanudjaja, H.J.; Hejase, C.A.; Tarabara, V.V.; et al. Membrane-Based Separation for Oily Wastewater: A Practical Perspective. Water Res. 2019, 156, 347–365. 

  • 6.

    Peterson, C.H.; Rice, S.D.; Short, J.W.; et al. Long-Term Ecosystem Response to the Exxon Valdez Oil Spill. Science 2003, 302, 2082–2086. 

  • 7.

    Wang, Y.; Villalobos, L.F.; Liang, L.; et al. Scalable Weaving of Resilient Membranes with On-Demand Superwettability for High-Performance Nanoemulsion Separations. Sci. Adv. 2024, 10, eadn3289. 

  • 8.

    Wu, S.; Lu, F.; Deng, R.; et al. Solar-Driven Evaporators with Thin-Film-Composite Architecture Inspired by Plant Roots for Treating Concentrated Nano-/Submicrometer Emulsions. ACS Appl. Mater. Interfaces 2022, 14, 51555–51563. 

  • 9.

    Chen, J.; Zhang, Z.; Han, J.; et al. A Simple One-Step Method to Synthesize PVDF-PG/KH792 Membrane for Separation of Oil-in-Water Emulsions. J. Water Process Eng. 2021, 41, 101996. 

  • 10.

    Lin, Y.; Yu, F.; Yu, Z.; et al. Mussel-Inspired Superhydrophilic and Antibacterial Membranes for Effective Gravity-Driven Separation of Oil-in-Water Emulsions. Sep. Purif. Technol. 2024, 341, 126919. 

  • 11.

    Wang, B.; Luo, X.; Feng, Y.; et al. Turbo Synergistic Oily Wastewater Remediation in Bio Inspired Cone Array Barrel. Adv. Sci. 2022, 9, 2204244. 

  • 12.

    Chen, D.; Bao, M.; Ge, H.; et al. A Hydrogel Coated Wood Membrane with Intelligent Oil Pollution Detection for Emulsion Separation. Small 2024, 20, 2401719. 

  • 13.

    Zhang, J.; Peng, K.; Xu, Z.-K.; et al. A Comprehensive Review on the Behavior and Evolution of Oil Droplets during Oil/Water Separation by Membranes. Adv. Colloid Interface Sci. 2023, 319, 102971. 

  • 14.

    Ge, J.; Zong, D.; Jin, Q.; et al. Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions. Adv. Funct. Mater. 2018, 28, 1705051. 

  • 15.

    Guo, X.; Zhao, L.; Li, H.; et al. Janus Channel of Membranes Enables Concurrent Oil and Water Recovery from Emulsions. Science 2024, 386, 654–659. 

  • 16.

    Meng, Z.; Zhu, L.; Wang, X.; et al. Electrospun Nanofibrous Composite Membranes for Separations. Acc. Mater. Res. 2023, 4, 180–192.

  • 17.

    Cheng, X.; Li, T.; Yan, L.; et al. Biodegradable Electrospinning Superhydrophilic Nanofiber Membranes for Ultrafast Oil-Water Separation. Sci. Adv. 2023, 9, eadh8195. 

  • 18.

    Zhang, X.; Zhu, Y.; Zhang, F.; et al. Hydrophilic/Hydrophobic Nanofibres Intercalated Multilayer Membrane with Hierarchical Structure for Efficient Oil/Water Separation. Sep. Purif. Technol. 2022, 288, 120672. 

  • 19.

    Ge, J.; Ye, Y.; Yao, H.; et al. Pumping through Porous Hydrophobic/Oleophilic Materials: An Alternative Technology for Oil Spill Remediation. Angew. Chem. 2014, 126, 3686–3690. 

  • 20.

    Yang, J.; Li, H.; Chen, Z.; et al. Janus Membranes with Controllable Asymmetric Configurations for Highly Efficient Separation of Oil-in-Water Emulsions. J. Mater. Chem. A 2019, 7, 7907–7917. 

  • 21.

    Hu, Y.; Li, H.; Xu, Z. Janus Hollow Fiber Membranes with Functionalized Outer Surfaces for Continuous Demulsification and Separation of Oil-in-Water Emulsions. J. Membr. Sci. 2022, 648, 120388. 

  • 22.

    Li, X.; Zhang, W.; Qu, R.; et al. Asymmetric Superwetting Configuration of Janus Membranes Based on Thiol-Ene Clickable Silane Nanospheres Enabling On-Demand and Energy-Efficient Oil-Water Remediation. J. Mater. Chem. A 2019, 7, 10047–10057. 

  • 23.

    Zhang, M.; Yang, Q.; Gao, M.; et al. Fabrication of Janus Cellulose Nanocomposite Membrane for Various Water/Oil Separation and Selective One-Way Transmission. J. Environ. Chem. Eng. 2021, 9, 106016. 

  • 24.

    Qin, Y.; Shen, H.; Han, L.; et al. Mechanically Robust Janus Poly (Lactic Acid) Hybrid Fibrous Membranes toward Highly Efficient Switchable Separation of Surfactant-Stabilized Oil/Water Emulsions. ACS Appl. Mater. Interfaces 2020, 12, 50879–50888. 

  • 25.

    Huang, X.; Wu, Z.; Zhang, S.; et al. Mechanically Robust Janus Nanofibrous Membrane with Asymmetric Wettability for High Efficiency Emulsion Separation. J. Hazard. Mater. 2022, 429, 128250. 

  • 26.

    Zeng, X.; Qian, L.; Yuan, X.; et al. Inspired by Stenocara Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation. ACS Nano 2017, 11, 760–769. 

  • 27.

    Jiang, X.; Yang, F.; Xu, G.; et al. Smart NiAl-LHDs-Based Superwetting Janus Membrane Based on Charge Demulsification for Efficient Separation of Multiple Emulsions and Mixtures via Multi-Strategy Synergy. Sep. Purif. Technol. 2023, 323, 124350. 

  • 28.

    Du, L.; Quan, X.; Fan, X.; et al. Electro-Responsive Carbon Membranes with Reversible Superhydrophobicity/Superhydrophilicity Switch for Efficient Oil/Water Separation. Sep. Purif. Technol. 2019, 210, 891–899. 

  • 29.

    Wei, X.; Naraginti, S.; Yang, X.; et al. Polydopamine Functionalized FeVO4@PVDF Ultrafiltration Membrane with Superior Antifouling and Detoxification Properties. Chem. Eng. J. 2024, 497, 154718. 

  • 30.

    Zou, D.; Nie, D.; Wang, W.; et al. Fabrication of a MoS2@PAN Composite Membrane for Efficient Removal of Toxic Cr (VI). Desalination 2025, 600, 118460. 

  • 31.

    Cheng, X.; Sun, Z.; Yang, X.; et al. Construction of Superhydrophilic Hierarchical Polyacrylonitrile Nanofiber Membranes by in Situ Asymmetry Engineering for Unprecedently Ultrafast Oil-Water Emulsion Separation. J. Mater. Chem. A 2020, 8, 16933–16942. 

  • 32.

    Cheng, X.; Jiao, Y.; Sun, Z.; et al. Constructing Scalable Superhydrophobic Membranes for Ultrafast Water-Oil Separation. ACS Nano 2021, 15, 3500–3508. 

  • 33.

    Zhou, H.; Su, Y.; Chen, X.; et al. Plasma Modification of Substrate with Poly(Methylhydrosiloxane) for Enhancing the Interfacial Stability of PDMS/PAN Composite Membrane. J. Membr. Sci. 2016, 520, 779–789. 

  • 34.

    Li, X.; Zhang, L.; Yang, Z.; et al. Hydrophobic Modified Activated Carbon Using PDMS for the Adsorption of VOCs in Humid Condition. Sep. Purif. Technol. 2020, 239, 116517. 

  • 35.

    Wang, Y.; Yu, Z.; Dufresne, A.; et al. Quantitative Analysis of Compatibility and Dispersibility in Nanocellulose-Reinforced Composites: Hansen Solubility and Raman Mapping. ACS Nano 2021, 12, 20148–20163. 

  • 36.

    Liu, Y.; Wang, X.; Feng, S. Nonflammable and Magnetic Sponge Decorated with Polydimethylsiloxane Brush for Multitasking and Highly Efficient Oil–Water Separation. Adv. Funct. Mater. 2019, 29, 1902488. 

  • 37.

    Shen, Q.; Jiang, Y.; Guo, S.; et al. One-Step Electrospinning Membranes with Gradual-Transition Wettability Gradient for Directional Fluid Transport. J. Membr. Sci. 2022, 644, 120091.

  • 38.

    Yang, X.; Wen, Y.; Li, Y.; et al. Engineering in Situ Catalytic Cleaning Membrane via Prebiotic-Chemistry-Inspired Mineralization. Adv. Mater. 2023, 35, 2306626. 

  • 39.

    Zhuang, Z.; Wu, K.; Zhang, T.; et al. One-Step Fabrication of Robust Stenocara Beetle-Inspired Membrane Deriving from Polyethylene Terephthalate (PET) Waste for Enhancing Emulsion Separation. Sep. Purif. Technol. 2024, 351, 128128. 

  • 40.

    Ge, J.; Jin, Q.; Zong, D.; et al. Biomimetic Multilayer Nanofibrous Membranes with Elaborated Superwettability for Effective Purification of Emulsified Oily Wastewater. ACS Appl. Mater. Interfaces 2018, 10, 16183–16192. 

  • 41.

    Zhong, X.; Shi, Q.; Guo, Z. Synergistic Construction of Superhydrophilic PVDF Membranes by Dual Modification Strategies for Efficient Emulsion Separation. Small 2024, 20, e2402538. 

  • 42.

    Cheng, X.; Zhang, J.; Yan, L.; et al. Biodegradable Nanofiber Membranes Based on Interpenetrating Network for Highly Efficient Oil/Water Separation. Adv. Compos. Hybrid Mater. 2024, 7, 197.

  • 43.

    Ning, D.; Lu, Z.; Tian, C.; et al. Hierarchical and Superwettable Cellulose Acetate Nanofibrous Membranes Decorated via 3D Flower-Like Layered Double Hydroxides for Efficient Oil/Water Separation. Sep. Purif. Technol. 2024, 342, 127052.

  • 44.

    Zhou, M.; Zhou, J.; Yan, L.; et al. Engineering Superhydrophilic and Fouling-Free COF Armor for Ultrafast Oil–Water Separation. Small 2025, 21, 2505330. 

  • 45.

    Feng, L.; Gao, Y.; Xu, Y.; et al. A Dual-Functional Layer Modified GO@SiO2 Membrane with Excellent Anti-Fouling Performance for Continuous Separation of Oil-in-Water Emulsion. J. Hazard. Mater. 2021, 420, 126681. 

  • 46.

    Xu, L.; Xu, T.; Liu, W.; et al. Heterogeneous Wettability Membrane for Efficient Demulsification and Separation of Oil-in-Water Emulsions. Chem. Eng. J. 2024, 489, 151466. 

  • 47.

    Li, X.; Gui, Q.; Wei, Y.; et al. Novel Superwetting Nanofibrous Skins for Removing Stubborn Soluble Oil in Emulsified Wastewater. J. Mater. Chem. A 2021, 9, 26127–26134. 

  • 48.

    Zhou, M.; Tong, J.; Zhou, F.; et al. Constructing Heterogeneously Wettable Nanofiber Membrane for Highly Efficient Oil Refining. Adv. Membr. 2025, 5, 100135.

  • 49.

    Wu, J.; Wang, N.; Wang, L.; et al. Unidirectional Water-Penetration Composite Fibrous Film via Electrospinning. Soft Matter 2012, 8, 5996–5999.

  • 50.

    Yang, H.; Hou, J.; Chen, V.; et al. Janus Membranes: Exploring Duality for Advanced Separation. Angew. Chem. Int. Ed. 2016, 55, 13398–13407. 

Share this article:
How to Cite
Yan, L.; Zhang, M.; Chen, C.; Zhou, M.; Wang, K.; Gao, Y.; Liu, P.; Li, D.; Cheng, X. Hierarchical Sandwich-Type Hetero-Wetting Nanofibrous Membrane toward Nano-Scaled Oil/Water Emulsion Separation. Global Environmental Science 2026, 2 (1), 53–66. https://doi.org/10.53941/ges.2026.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.