- 1.
Ashok Kumar, S.S.; Bashir, S.; Ramesh, K.; Ramesh, S. A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. J. Mater. Sci. 2022, 57, 12236–12278.
https://doi.org/10.100s7/s10853-022-07346-x.
- 2.
Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027−6053.
- 3.
Sun, Z.; Kong, P.; Gui, H.; Chen, Z.; Song, Y.; Wang, Y.; Wang, Y.; Kipper, M.J.; Tang, J.; Huang, L. Recent advances in the preparation and application of graphene oxide smart response membranes. Mater. Today Chem. 2024, 41, 102303.
https://doi.org/10.1016/j.mtchem.2024.102303.
- 4.
Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.
https://doi.org/10.1039/c4nr01600a.
- 5.
Otsuka, H.; Urita, K.; Honma, N.; Kimuro, T.; Amako, Y.; Kukobat, R.; Bandosz, T.J.; Ukai, J.; Moriguchi, I.; Kaneko, K. Transient chemical and structural changes in graphene oxide during ripening. Nat. Commun. 2024, 15, 1708.
https://doi.org/10.1038/s41467-024-46083-4.
- 6.
- 7.
Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160.
https://doi.org/10.1038/srep10160.
- 8.
Eivazzadeh-Keihan, R.; Alimirzaloo, F.; Aghamirza Moghim Aliabadi, H.; Bahojb Noruzi, E.; Akbarzadeh, A.R.; Maleki, A.; Madanchi, H.; Mahdavi, M. Functionalized graphene oxide nanosheets with folic acid and silk fibroin as a novel nanobiocomposite for biomedical applications. Sci. Rep. 2022, 12, 6205.
https://doi.org/10.1038/s41598-022-10212-0.
- 9.
Kauling, A.P.; Seefeldt, A.T.; Pisoni, D.P.; Pradeep, R.C.; Bentini, R.; Oliveira, R.V.B.; Novoselov, K.S.; Castro Neto, A.H. The Worldwide Graphene Flake Production. Adv. Mater. 2018, 30, 1803784.
https://doi.org/10.1002/adma.201803784.
- 10.
Farivar, F. Unlocking thermogravimetric analysis (TGA) in the fight against “Fake graphene” materials. Carbon 2021, 179, 505–513.
- 11.
Farjadian, F.; Abbaspour, S.; Sadatlu, M.A.A.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Mozaffari, N.; Karimi, M.; Hamblin, M.R. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect 2020, 5, 10200–10219.
https://doi.org/10.1002/slct.202002501.
- 12.
Ikram, R.; Jan, B.M.; Ahmad, W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. J. Mater. Res. Technol. 2020, 9, 11587–11610.
- 13.
- 14.
- 15.
Pendolino, F.; Armata, N. Synthesis, Characterization and Models of Graphene Oxide. In Graphene Oxide in Environmental Remediation Process; Pendolino, F., Armata, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 5–21.
- 16.
- 17.
Khine, Y.Y.; Wen, X.; Jin, X.; Foller, T.; Joshi, R. Functional groups in graphene oxide. Phys. Chem. Chem. Phys. 2022, 24, 26337–26355.
https://doi.org/10.1039/D2CP04082D.
- 18.
Ferrari, I.; Motta, A.; Zanoni, R.; Scaramuzzo, F.A.; Amato, F.; Dalchiele, E.A.; Marrani, A.G. Understanding the nature of graphene oxide functional groups by modulation of the electrochemical reduction: A combined experimental and theoretical approach. Carbon 2023, 203, 29–38.
https://doi.org/.
- 19.
Farivar, F.; Lay Yap, P.; Karunagaran, R.U.; Losic, D. Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. C 2021, 7, 41.
- 20.
Dehghanzad, B.; Razavi Aghjeh, M.K.; Rafeie, O.; Tavakoli, A.; Jameie Oskooie, A. Synthesis and characterization of graphene and functionalized graphene via chemical and thermal treatment methods. RSC Adv. 2016, 6, 3578–3585.
https://doi.org/10.1039/C5RA19954A.
- 21.
Losic, D.; Farivar F.; Yap P.L.; Tung T.T.; Nine, J. New insights on energetic properties of graphene oxide (GO) materials and their safety and environmental risks. Sci. Total Environ. 2022, 848, 157743.
- 22.
Kwan, Y.C.G.; Ng, G.M.; Huan, C.H.A. Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. Thin Solid Films 2015, 590, 40–48.
https://doi.org/10.1016/j.tsf.2015.07.051.
- 23.
Eng, A.Y.S.; Chua, C.K.; Pumera, M. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256–20266.
https://doi.org/10.1039/C5NR05891K.
- 24.
Boehm, H.-P. Surface chemical characterization of carbons from adsorption studies. In Adsorption by Carbons; Elsevier: Amsterdam, The Netherlands, 2008; pp. 301–327.
- 25.
Spreadbury, C.; Rodriguez, R.; Mazyck, D. Comparison Between FTIR and Boehm Titration for Activated Carbon Functional Group Quantification. J. Undergrad. Res. 2017, 18, 1–7.
- 26.
Kim, Y.S.; Park, C. Titration Method for the Identification of Surface Functional Groups; Butterworth-Heinemann: Oxford, UK, 2016; pp. 273–286.
- 27.
Tararan, A.; Zobelli, A.; Benito, A.M.; Maser, W.K.; Stéphan, O. Revisiting Graphene Oxide Chemistry via Spatially-Resolved Electron Energy Loss Spectroscopy. Chem. Mater. 2016, 28, 3741–3748.
https://doi.org/10.1021/acs.chemmater.6b00590.
- 28.
Ren, H.; Cunha, E.; Sun, Q.; Li, Z.; Kinloch, I.A.; Young, R.J.; Fan, Z. Surface functionality analysis by Boehm titration of graphene nanoplatelets functionalized via a solvent-free cycloaddition reaction. Nanoscale Adv. 2019, 1, 1432–1441.
https://doi.org/10.1039/C8NA00280K.
- 29.
Rabchinskii, M.K.; Ryzhkov, S.A.; Besedina, N.A.; Brzhezinskaya, M.; Malkov, M.N.; Stolyarova, D.Y.; Arutyunyan, A.F.; Struchkov, N.S.; Saveliev, S.D.; Diankin, I.D.; et al. Guiding graphene derivatization for covalent immobilization of aptamers. Carbon 2022, 196, 264–279.
https://doi.org/10.1016/j.carbon.2022.04.072.
- 30.
Tao, W.; Lan, Y.; Zhang, J.; Zhu, L.; Liu, Q.; Yang, Y.; Yang, S.; Tian, G.; Zhang, S. Revealing the Chemical Nature of Functional Groups on Graphene Oxide by Integrating Potentiometric Titration and Ab Initio Calculations. ACS Omega 2023, 8, 24332–24340.
- 31.
Fidel, R.B.; Laird, D.A.; Thompson, M.L. Evaluation of Modified Boehm Titration Methods for Use with Biochars. J. Environ. Qual. 2013, 42, 1771–1778.
- 32.
Hernandez-Ortiz, M.; Durán-Muñoz, H.A.; Lozano-Lopes, J.D.; Durón, S.M.; Galván-Valencia, M.; Estevez-Martínez, Y.; Ortiz-Medina, I.; Ramírez-Hernández, L.A.; Cruz-Dominguez, O.; Castaño, V.M. Determination of the Surface Functionality of Nanocarbon Allotropes by Boehm titration. Surf. Rev. Lett. 2020, 27, 1950190.
- 33.
Pawlicka, A.; Doczekalska, B. Determination of surface oxygen functional groups of active carbons according to the Boehm’s titration method. For. Wood Technol. 2013, 84, 11–14.
- 34.
Hernández-Ortiz, M.; Lozano-López, J.D.; Durón, S.M.; Galván-Valencia, M.; Estevez-Martínez, Y.; Durán-Muñoz, H.A.; Carrera-Escobedo, J.; Guirette-Barbosa, O.; Ortiz-Medina, I.; Ramírez-Hernández, L.A.; et al. Quantitative Measurement of Functional Groups on Nanocarbon Allotropes Surface by Boehm Titration. J. Micro Nano-Manuf. 2019, 7, 011002.
- 35.
Hernández Rosas, J.J.; Ramírez Gutiérrez, R.E.; Escobedo-Morales, A.; Chigo Anota, E. First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J. Mol. Model. 2011, 17, 1133–1139.
https://doi.org/10.1007/s00894-010-0818-1.
- 36.
Shi, G.; Araby, S.; Gibson, C.T.; Meng, Q.; Zhu, S.; Ma, J. Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Adv. Funct. Mater. 2018, 28, 1706705.
https://doi.org/10.1002/adfm.201706705.
- 37.
- 38.
Standardization ISO 3001:1999; Plastics—Epoxy Compounds—Determination of Epoxy Equivalent. IOS: Geneva, Switzerland, 1999.
- 39.
Yap, P.L.; Kabiri, S.; Tran, D.N.H.; Losic, D. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS Appl. Mater. Interfaces 2019, 11, 6350–6362.
https://doi.org/10.1021/acsami.8b17131.
- 40.
Çiplak, Z.; Yildiz, N.; Çalimli, A. Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 361–370.
https://doi.org/10.1080/1536383X.2014.894025.
- 41.
Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714
- 42.
Van Pelt, A.H.; Simakova, O.A.; Schimming, S.M.; Ewbank, J.L.; Foo, G.S.; Pidko, E.A.; Hensen, E.J.M.; Sievers, C. Stability of functionalized activated carbon in hot liquid water. Carbon 2014, 77, 143–154.
- 43.
Goertzen, S.L.; Thériault, K.D.; Oickle, A.M.; Tarasuk, A.C.; Andreas, H.A. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 2010, 48, 1252–1261.
- 44.
Ederer, J. Quantitative determination of acidic groups in functionalized graphene by direct titration. React. Funct. Polym. 2016, 103, 44–53.
- 45.
Schönherr, J.; Buchheim, J.R.; Scholz, P.; Adelhelm, P. Boehm Titration Revisited (Part I): Practical Aspects for Achieving a High Precision in Quantifying Oxygen-Containing Surface Groups on Carbon Materials. C 2018, 4, 21.
- 46.
Zhang, Z. Modified potentiometric titration method to distinguish and quantify oxygenated functional groups on carbon materials by pKa and chemical reactivity. Carbon 2020, 166, 436–445.
- 47.
Kim, Y.S.; Yang, S.J.; Lim, H.J.; Kim, T.; Park, C.R. A simple method for determining the neutralization point in Boehm titration regardless of the CO2 effect. Carbon 2012, 50, 3315–3323.
- 48.
Morgunov, A.N.; Perchenko, A.A. Kinetics of saponification of ?-alkylbutyrolactones by aqueous Na2Co3 solution. Chem. Technol. Fuels Oils 1978, 14, 585–587.
- 49.
Zhang, Y.; Wen, G.; Fan, S.; Chu, Y.; Li, S.; Xu, B.; Zhang, J. Phenolic hydroxyl functionalized partially reduced graphene oxides for symmetric supercapacitors with significantly enhanced electrochemical performance. J. Power Sources 2019, 435, 226799.
https://doi.org/10.1016/j.jpowsour.2019.226799.
- 50.
- 51.
- 52.
- 53.
Guerrero-Contreras, J.; Caballero-Briones, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220.
https://doi.org/10.1016/j.matchemphys.2015.01.005.