2504000514
  • Open Access
  • Article
Enhanced Performance of a Supercapacitor by Addition of Turbostratic Fractal Graphene to an Activated Carbon Electrode
  • Maithri Dissanayake 1,   
  • Charlie Karunaratne 1,   
  • A. V. R. S. Koswaththa 2,   
  • S. G. S. M. Nawarathna 2,   
  • M. I. U. Weerasinghe 3,   
  • G. R. A. Kumara 3,   
  • Ranjith Divigalpitiya 4, *

Received: 19 Nov 2024 | Revised: 24 Dec 2024 | Accepted: 08 Feb 2025 | Published: 24 Mar 2025

Abstract

This research explores the enhancement of supercapacitor performance through the incorporation of a new form of turbostratic graphene (Fractal Graphene, FGA-1) into activated carbon (AC) electrodes. By combining FGA-1 with AC, the electrodes exhibit improved electrical conductivity and enhanced electrolyte diffusion, leading to superior charge storage capability. Material characterization confirms that the FGA-1–AC composite forms a synergistic structure, facilitating better interaction with the electrolyte. The composite electrodes demonstrate significant improvements in specific capacitance compared to AC-only counterparts. Enhanced wettability and optimized diffusion rates were identified as key factors contributing to these improvements. The findings highlight the potential of FGA-1 as an additive for improving the efficiency of carbon-based supercapacitors, providing a foundation for high-performance energy storage solutions suitable for a broad range of applications.

References 

  • 1.
    Li, J.; Xiao, T.; Yu, X.; Wang, M. Graphene-based composites for supercapacitors. J. Phys. Conf. Ser. Inst. Phys. 2022, 2393, 012005. https://doi.org/10.1088/1742-6596/2393/1/012005.
  • 2.
    Achkari, O. and Fadar, A. El. Renewable Energy Storage Technologes - A Review, Proceeding of Engineering and Technology -PET, 2018, Vol 35, pp 60-79.
  • 3.
    Tromly, K. Renewable Energy: An Overview. Energy Efficiency and Renewable Energy Clearinghouse (EREC) Brochure. DOE/GO-102001-1102. FS175, March 2001.
  • 4.
    Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. https://doi.org/10.3390/en16031415.
  • 5.
    Yunus, A.M.S.; Swasti, S. Purwito, Overview of Hysteresis Current Controller Application in Renewable Energy Based Power Systems. IOP Conf. Ser. Mater. Sci. Eng. 2019, 536, 012048. https://doi.org/10.1088/1757-899X/536/1/012048.
  • 6.
    Sridhar, S.; Salkuti, S.R. Development and Future Scope of Renewable Energy and Energy Storage Systems. Smart Cities 2022, 5, 668–699. https://doi.org/10.3390/smartcities5020035.
  • 7.
    Uno, M. Supercapacitor-Based Electrical Energy Storage System. Energy Storage Emerg. Era Smart Grids 2011, 10, 18667. https://doi.org/10.5772/18667.
  • 8.
    Vukajlović, N.; Milićević, D.; Dumnić, B.; Popadić, B. Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage. J. Energy Storage 2020, 31, 101603. https://doi.org/10.1016/j.est.2020.101603.
  • 9.
    Olabi, A.G.; Abbas, Q.; Abdelkareem, M.A.; Alami, A.H.; Mirzaeian, M.; Sayed, E.T. Carbon-Based Materials for Supercapacitors: Recent Progress, Challenges and Barriers. Batteries 2022, 9, 19. https://doi.org/10.3390/batteries9010019.
  • 10.
    Sharma, K.; Arora, A.; Tripathi, S.K. Tripathi, Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. https://doi.org/10.1016/j.est.2019.01.010.
  • 11.
    Jalal, N.I.; Ibrahim, R.I.; Oudah, M.K. A review on Supercapacitors: Types and components. J. Phys. 2021, 1973, 012015. https://doi.org/10.1088/1742-6596/1973/1/012015.
  • 12.
    Halper, M.S.; Ellenbogen, J.C. Supercapacitors: A Brief Overview; MITRE Nanosystems Group: Tysons, VA, USA, 2006.
  • 13.
    Senthilkumar, S.T.; Selvan, R.K.; Lee, Y.S.; Melo, J.S. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 2013, 1, 1086–1095. https://doi.org/10.1039/c2ta00210h.
  • 14.
    Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672. https://doi.org/10.1039/c7ta00863e.
  • 15.
    Fields, R.; Lei, C.; Markoulidis, F.; Lekakou, C. The Composite Supercapacitor. Energy Technol. 2016, 4, 517–525. https://doi.org/10.1002/ente.201500328.
  • 16.
    Thomas, S.; Abraham, J.; Parambil, A.M.; Krishnan, A.; Maria, H.J.; Ilschner, B.; Lees, J.K.; Dhingra, A.K.; McCullough, R.L. Composite Materials. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: New York, NY, USA, 2016; pp. 1–44. https://doi.org/10.1002/14356007.a07_369.pub2.
  • 17.
    Wang, G.; Wang, H.; Zhong, B.; Zhang, L.; Zhang, J. Supercapacitors’ Applications; Taylor & Francis Group, LLC: Oxford, UK, 2016; pp. 479–492. https://doi.org/10.1201/B19061-27.
  • 18.
    Ernst, A.J.; Ansah, I.; Bachus, K.; Kporxah, C.; Tomomewo, O.S. The Role of Energy Storage in the Evolution of Renewable Energy and Its Effect on the Environment. Am. J. Energy Res. 2023, 11, 128–143. https://doi.org/10.12691/ajer-11-3-4.
  • 19.
    Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. https://doi.org/10.1016/j.jmat.2016.01.001.
  • 20.
    Stoller, M.D.; Park, S.; Yanwu, Z.; An, J.; Ruoff, R.S. Graphene-Based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. https://doi.org/10.1021/nl802558y.
  • 21.
    Moreno-Jimenez, D.A.; Kim, K.Y. Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. Bioresour. Technol. 2022, 350, 126881. https://doi.org/10.1016/J.BIORTECH.2022.126881.
  • 22.
    Dissanayake, S.M.B.; Wimalasena, I.G.K.J.; Keppetipola, N.M.; Karunarathne, B.C.; Medagedara, A.D.T.; Cojocaru, L.; Uchida, S.; Rajapakse, R.M.G.; Tennakone, K.; Yoshimura, M.; et al. Effect of Triton X-100 surfactant concentration on the wettability of polyethylene-based separators used in supercapacitors. J. Sci. Adv. Mater. Devices 2024, 9, 100801. https://doi.org/10.1016/J.JSAMD.2024.100801.
  • 23.
    Ndagijimana, P.; Rong, H.; Ndokoye, P.; Mwizerwa, J.P.; Nkinahamira, F.; Luo, S.; Guo, D.; Cui, B. A review on activated carbon/ graphene composite-based materials: Synthesis and applications. J. Clean. Prod. 2023, 417, 138006. https://doi.org/10.1016/J.JCLEPRO.2023.138006.
  • 24.
    Dujearic-Stephane, K.; Gupta, M.; Kumar, A.; Sharma, V.; Pandit, S.; Bocchetta, P.; Kumar, Y. The effect of modifications of activated carbon materials on the capacitive performance: Surface, microstructure, and wettability. J. Compos. Sci. 2021, 5, 66. https://doi.org/10.3390/jcs5030066.
  • 25.
    Ntakirutimana, S.; Tan, W.; Wang, Y. Enhanced surface activity of activated carbon by surfactants synergism. RSC Adv. 2019, 9, 26519–26531. https://doi.org/10.1039/C9RA04521J.
  • 26.
    Nepal, A.; Singh, G.P.; Flanders, B.N.; Sorensen, C.M. One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation. Nanotechnology 2013, 24, 245602. https://doi.org/10.1088/0957-4484/24/24/245602.
  • 27.
    Wright, J.P.; Sigdel, S.; Corkill, S.; Covarrubias, J.; LeBan, L.; Nepal, A.; Li, J.; Divigalpitiya, R.; Bossmann, S.H.; Sorensen, C.M. Synthesis of turbostratic nanoscale graphene via chamber detonation of oxygen/acetylene mixtures. Nano Sel. 2022, 3, 1054–1068. https://doi.org/10.1002/nano.202100305.
  • 28.
    Stiver, W.; Mackay, D. Linear Superposition in Modelling Contaminant Behaviour in Aquatic Systems. Water Res. 1995, 29, 329–335.
  • 29.
    Hou, D.; Li, K.; Ma, R.; Liu, Q. Influence of order degree of coaly graphite on its structure change during preparation of graphene oxide. J. Mater. 2020, 6, 628–641. https://doi.org/10.1016/j.jmat.2020.04.009.
  • 30.
    Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018.
  • 31.
    Judai, K.; Iguchi, N.; Hatakeyama, Y. Low-Temperature Production of Genuinely Amorphous Carbon from Highly Reactive Nanoacetylide Precursors. J. Chem. 2016, 2016, 7840687. https://doi.org/10.1155/2016/7840687.
  • 32.
    Bakhia, T.; Khamizov, R.K.; Bavizhev, Z.R.; Bavizhev, M.D.; Konov, M.A.; Kozlov, D.A.; Tikhonova, S.A.; Maslakov, K.I.; Ashurov, M.S.; Melezhik, A.V.; et al. Composite graphene-containing porous materials from carbon for capacitive deionization of water. Molecules 2020, 25, 2620. https://doi.org/10.3390/molecules25112620.
  • 33.
    Folaranmi, G.; Bechelany, M.; Sistat, P.; Cretin, M.; Zaviska, F. Comparative investigation of activated carbon electrode and a novel activated carbon/graphene oxide composite electrode for an enhanced capacitive deionization. Materials 2020, 13, 5185. https://doi.org/10.3390/ma13225185.
  • 34.
    Chibowski, E.; Hołysz, L. On the use of washburn’s equation for contact angle determination. J. Adhes. Sci. Technol. 1997, 11, 1289–1301. https://doi.org/10.1163/156856197X00147.
  • 35.
    Liu, T.; Wang, K.; Chen, Y.; Zhao, S.; Han, Y. Dominant role of wettability in improving the specific capacitance. Green Energy Environ. 2019, 4, 171–179. https://doi.org/10.1016/j.gee.2019.01.010.
  • 36.
    Gromadskyi, D.G.; Chae, J.H.; Norman, S.A.; Chen, G.Z. Correlation of energy storage performance of supercapacitor with iso-propanol improved wettability of aqueous electrolyte on activated carbon electrodes of various apparent densities. Appl. Energy 2015, 159, 39–50. https://doi.org/10.1016/j.apenergy.2015.08.108.
  • 37.
    Zhao, Y.; Geng, Z.; Sun, W. Activated Carbon-Based Supercapacitors with High Gravimetric and Volumetric Capacitance at Commercial-Level Mass Loading. Energy Technol. 2023, 11, 2300373. https://doi.org/10.1002/ente.202300373.
  • 38.
    Du, X.; Wang, S.; Liu, Y.; Lu, M.; Wu, K.; Lu, M. Self-assembly of free-standing hybrid film based on graphene and zinc oxide nanoflakes for high-performance supercapacitors. J. Solid State Chem. 2019, 277, 441–447. https://doi.org/10.1016/j.jssc.2019.06.003.
  • 39.
    Li, Y.; Shang, T.-X.; Gao, J.-M.; Jin, X.-J. Nitrogen-doped activated carbon/graphene composites as high-performance supercapacitor electrodes. RSC Adv. 2017, 7, 19098–19105. https://doi.org/10.1039/C7RA00132K.
  • 40.
    Gürten Inal, İ.I. Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities. Turk. J. Chem. 2021, 45, 927–941. https://doi.org/10.3906/kim-2012-39.
  • 41.
    Rahim, A.H.A.; Ramli, N.; Nordin, A.N.; Wahab, M.F.A. Supercapacitor Performance with Activated Carbon and Graphene Aerogel Composite Electrodes. Int. J. Nanoelectron. Mater. 2022, 15, 139–154.
  • 42.
    Rahim, A.H.A.; Ramli, N.; Nordin, A.N.; Wahab, M.F.A. Supercapacitor performance with activated carbon and graphene nanoplatelets composite electrodes, and insights from the equivalent circuit model. Carbon Trends 2021, 5, 100101. https://doi.org/10.1016/j.cartre.2021.100101.
  • 43.
    Barzegar, F.; Bello, A.; Fashedemi, O.O.; Dangbegnon, J.K.; Momodu, D.Y.; Taghizadeh, F.; Manyala, N. Synthesis of 3D porous carbon based on cheap polymers and graphene foam for high-performance electrochemical capacitors. Electrochim. Acta 2015, 180, 442–450. https://doi.org/10.1016/j.electacta.2015.08.148.
  • 44.
    Arunkumar, M.; Paul, A. Importance of Electrode Preparation Methodologies in Supercapacitor Applications. ACS Omega 2017, 2, 8039–8050. https://doi.org/10.1021/acsomega.7b01275.
  • 45.
    Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. https://doi.org/10.1021/acsmeasuresciau.2c00070.
  • 46.
    ABID, M.A.A.M.; Radzi, M.I.; Mupit, M.; Osman, H.; Munawar, R.F.; Samat, K.F.; Islam, M.R. Cyclic Voltammetry and Galvanostatic Charge-Discharge Analyses of Polyaniline/Graphene Oxide Nanocomposite based Supercapacitor. Malays. J. Compos. Sci. Manuf. 2020, 3, 14–26. https://doi.org/10.37934/mjcsm.3.1.1426.
  • 47.
    Gunday, S.T.; Cevik, E.; Anil, I.; Alagha, O.; Sabit, H.; Bozkurt, A. Symmetric Supercapacitor Application of Anhydrous Gel Electrolytes Comprising Doped Tetrazole Terminated Flexible Spacers. Macromol. Res. 2020, 28, 1074–1081. https://doi.org/10.1007/s13233-020-8150-9.
  • 48.
    Chen, L.; Bai, H.; Huang, Z.; Li, L. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy Environ. Sci. 2014, 7, 1750–1759. https://doi.org/10.1039/C4EE00002A.
  • 49.
    Azman, N.H.N.; Nazir, M.S.M.M.; Ngee, L.H.; Sulaiman, Y. Graphene-based ternary composites for supercapacitors. Int. J. Energy Res. 2018, 42, 2104–2116. https://doi.org/10.1002/er.4001.
Share this article:
How to Cite
Dissanayake, M.; Karunaratne, C.; Koswaththa, A. V. R. S.; Nawarathna, S. G. S. M.; Weerasinghe, M. I. U.; Kumara, G. R. A.; Divigalpitiya, R. Enhanced Performance of a Supercapacitor by Addition of Turbostratic Fractal Graphene to an Activated Carbon Electrode. Graphene Innovation and Technology 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.