2507001015
  • Open Access
  • Review
Applications of Graphene in Post-Moore Electronic Devices
  • Chen Meng 1, 2, 3,   
  • Jiawei Li 1, 2, 3,   
  • Fangzhu Qing 4,   
  • Xuesong Li 4,   
  • Hongwei Zhu 1, 2, 3, 5, *

Received: 06 May 2025 | Revised: 30 May 2025 | Accepted: 30 Jun 2025 | Published: 29 Jul 2025

Abstract

As Moore’s Law approaches its physical and economic limits, the pursuit of alternative electronic paradigms has become critical. Graphene, a one-atom-thick material with exceptional electrical, thermal, and mechanical properties, offers promising opportunities for next-generation devices in the post-Moore era. This perspective article explores graphene’s role in three key computing frontiers: (1) beyond-CMOS transistors, where its high carrier mobility and atomic thinness support ultra-fast, scaled devices; (2) neuromorphic computing, where graphene-based synaptic devices exhibit energy-efficient, analog learning behaviors; and (3) quantum technologies, where graphene enables tunable superconducting junctions, spin qubits, and moiré-based correlated states. We highlight the fundamental physics underlying these applications, survey the recent engineering advances, and assess the major challenges—such as bandgap engineering, device variability, and large-scale integration. Through careful material design and heterogeneous integration, graphene is poised to become a critical enabler of hybrid electronic architectures that extend the capabilities of conventional silicon and help usher in a new era of information processing.

References 

  • 1.
    Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Koppens, F.H. Graphene and two-dimensional materials for silicon technolsogy. Nature 2019, 573, 507–518.
  • 2.
    Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
  • 3.
    Kim, K.; Choi, J.Y.; Kim, T.; Cho, S.H.; Chung, H.J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.
  • 4.
    Han, S.J.; Garcia, A.V.; Oida, S.; Jenkins, K.A.; Haensch, W. Graphene radio frequency receiver integrated circuit. Nat. Commun. 2014, 5, 3086.
  • 5.
    Schwierz, F. Graphene transistors: status, prospects, and problems. Proc. IEEE 2013, 101, 1567–1584.
  • 6.
    Zheng, L.; Zhang, J.; Wang, H.; Liu, J. RF NEMS switches based on graphene for low pull-in voltage and excellent RF performance. Sci. Rep. 2024, 14, 23346.
  • 7.
    Yang, H.; Heo, J.; Park, S.; Song, H.J.; Seo, D.H.; Byun, K.E.; Kim, K. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science 2012, 336, 1140–1143.
  • 8.
    Mobarakeh, M.S.; Moezi, N.; Vali, M.; Dideban, D. A novel graphene tunnelling field effect transistor (GTFET) using bandgap engineering. Superlattices Microstruct 2016, 100, 1221–1229.
  • 9.
    Koepfli, S.M.; Baumann, M.; Gadola, R.; Nashashibi, S.; Koyaz, Y.; Rieben, D.; Leuthold, J. Controlling photothermoelectric directional photocurrents in graphene with over 400 GHz bandwidth. Nat. Commun. 2024, 15, 7351.
  • 10.
    Mishra, P.K.; Rai, A.; Sharma, N.; Sharma, K.; Mittal, N.; Haq, M.A.; Tag El Din, E.M. Design and analysis of graphene based tunnel field effect transistor with various ambipolar reducing techniques. CMC 2023, 76, 1309–1320.
  • 11.
    Chen, M.; Wan, Z.; Dong, H.; Chen, Q.; Gu, M.; Zhang, Q. Direct laser writing of graphene oxide for ultra-low power consumption memristors in reservoir computing for digital recognition. Natl. Sci. Open 2022, 1, 20220020.
  • 12.
    Kireev, D.; Liu, S.; Jin, H.; Patrick Xiao, T.; Bennett, C.H.; Akinwande, D.; Incorvia, J.A.C. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing. Nat. Commun. 2022, 13, 4386.
  • 13.
    Huang, M.R.; Li, Z.C.; Zhu, H.W. Recent advances of graphene and related materials in artificial intelligence. Adv. Intell. Syst. 2022, 4, 2200077.
  • 14.
    Kim, S.J.; Lee, H.J.; Lee, C.H.; Jang, H.W. 2D materials-based 3D integration for neuromorphic hardware. NPJ 2D Mater. Appl. 2024, 8, 70.
  • 15.
    Walters, B.; Jacob, M.V.; Amirsoleimani, A.; Rahimi Azghadi, M. A review of graphene-based memristive neuromorphic devices and circuits. Adv. Intell. Syst. 2023, 5, 2300136.
  • 16.
    Choi, Y.; Jeong, S.; Jeong, H.; Han, S.; Ko, J.; Yu, S.E.; Bae, S.H. Advanced AI computing enabled by 2D material-based neuromorphic devices. NPJ Unconv. Comput. 2025, 2, 8.
  • 17.
    Abunahla, H.; Halawani, Y.; Alazzam, A.; Mohammad, B. NeuroMem: Analog graphene-based resistive memory for artificial neural networks. Sci. Rep. 2020, 10, 9473.
  • 18.
    Wu, J.; Jian, J.; Ma, H.; Ye, Y.; Tang, B.; Qian, Z.; Li, L. Nonvolatile electro-optic response of graphene driven by ferroelectric polarization. Nano Lett. 2024, 24, 11469–11475.
  • 19.
    Werkmeister, T.; Ehrets, J.R.; Wesson, M.E.; Najafabadi, D.H.; Watanabe, K.; Taniguchi, T.; Kim, P. Anyon braiding and telegraph noise in a graphene interferometer. Science 2025, 388, 730–735.
  • 20.
    Sha, Y.; Zheng, J.; Liu, K.; Du, H.; Watanabe, K.; Taniguchi, T.; Chen, G. Observation of a Chern insulator in crystalline ABCA-tetralayer graphene with spin-orbit coupling. Science 2024, 384, 414–419.
  • 21.
    Lu, Z.; Han, T.; Yao, Y.; Hadjri, Z.; Yang, J.; Seo, J.; Ju, L. Extended quantum anomalous Hall states in graphene/hBN moiré superlattices. Nature 2025, 637, 1090–1095.
  • 22.
    Portolés, E.; Iwakiri, S.; Zheng, G.; Rickhaus, P.; Taniguchi, T.; Watanabe, K.; de Vries, F.K. A tunable monolithic SQUID in twisted bilayer graphene. Nat. Nanotechnol. 2022, 17, 1159–1164.
  • 23.
    Wang JI, J.; Rodan-Legrain, D.; Bretheau, L.; Campbell, D.L.; Kannan, B.; Kim, D.; Oliver, W.D. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 2018, 14, 120–125.
  • 24.
    Rodan-Legrain, D.; Cao, Y.; Park, J.M.; de la Barrera, S.C.; Randeria, M.T.; Watanabe, K.; Jarillo-Herrero, P. Highly tunable junctions and non-local Josephson effect in magic-angle graphene tunnelling devices. Nat. Nanotechnol. 2021, 16, 769–775.
  • 25.
    Tyagi, A.; Martini, L.; Gebeyehu, Z.M.; Mišeikis, V.; Coletti, C. Highly sensitive Hall sensors based on chemical vapor deposition graphene. ACS Appl. Nano Mater. 2023, 7, 18329–18336.
  • 26.
    Lee, G.H.; Efetov, D.K.; Jung, W.; Ranzani, L.; Walsh, E.D.; Ohki, T.A.; Fong, K.C. Graphene-based Josephson junction microwave bolometer. Nature 2020, 586, 42–46.
  • 27.
    Lo, C.H.; Chen, Y.H.; Lasrado, A.J.; Kuo, T.; Chang, Y.Y.; Hsu, T.Y.; Chiu, K.L. Superconducting quantum circuits based on 2D materials. Spin 2023, 13, 2340021.
  • 28.
    Casparis, L.; Larsen, T.W.; Olsen, M.S.; Kuemmeth, F.; Krogstrup, P.; Nygård, J.; Marcus, C.M. Gatemon benchmarking and two-qubit operations. Phys. Rev. Lett. 2016, 116, 150505.
  • 29.
    Tanaka, M.; Wang, J.Î,.J.; Dinh, T.H.; Rodan-Legrain, D.; Zaman, S.; Hays, M.; Oliver, W.D. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 2025, 638, 99–105.
  • 30.
    Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.
  • 31.
    Han, T.; Lu, Z.; Yao, Y.; Shi, L.; Yang, J.; Seo, J.; Ju, L. Signatures of chiral superconductivity in rhombohedral graphene. arXiv 2024, arXiv:2408.15233.
  • 32.
    Mukherjee, A.; Layek, S.; Sinha, S.; Kundu, R.; Marchawala, A.H.; Hingankar, M.; Deshmukh, M.M. Superconducting magic-angle twisted trilayer graphene with competing magnetic order and moiré inhomogeneities. Nature Mater. 2025, https://doi.org/10.1038/s41563-025-02252-4.
  • 33.
    Song, Z.D.; Bernevig, B.A. Magic-angle twisted bilayer graphene as a topological heavy Fermion problem. Phys. Rev. Lett. 2022, 129, 047601.
  • 34.
    Bao, W.; Jing, L.; Velasco, J., Jr.; Lee, Y.; Liu, G.; Tran, D.; Lau, C.N. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys. 2011, 7, 948–952.
  • 35.
    Messelot, S.; Aparicio, N.; De Seze, E.; Eyraud, E.; Coraux, J.; Watanabe, K.; Renard, J. Direct measurement of a sin(2φ) current phase relation in a graphene superconducting quantum interference device. Phys. Rev. Lett. 2024, 133, 106001.
Share this article:
How to Cite
Meng, C.; Li, J.; Qing, F.; Li, X.; Zhu, H. Applications of Graphene in Post-Moore Electronic Devices. Graphene Innovation and Technology 2025, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.